
© GTB

Syllabus

Foundation Level

Version 2022 EN

English edition.
Published by

Alliance for Qualification & German Testing Board e.V.

Composition of learning objectives from the syllabi of the International Software Testing Qualifications
Board (ISTQB®) original title: Certified Tester Foundation Level Syllabus Version 2018 V3.1 as well as
Certified Tester Advanced Level Syllabus Technical Test Analyst Version V4.0 extended by hands-on
Levels of competency.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 2 of 62 28.04.2022

© GTB

Copyright Notice

Copyright © German Testing Board (hereinafter referred to as GTB).

Copyright © 2019 the authors of the original edition CTFL 2018 V3.1 Klaus Olsen (Chair), Meile
Posthuma and Stephanie Ulrich.

Copyright © 2019 the authors of the original edition CTAL-TTA V4.0: Advanced Level Working Group:
Adam Roman, Armin Born, Christian Graf, Stuart Reid.

Copyright © 2021 the authors on the German & English hands-on levels of competency for A4Q
Software Development Engineer in Test (A4Q-SDET Foundation Level) as well as the selection of
learning objectives from the above syllabi: Members of the GTB Working Group SDET Foundation Level:
Jürgen Beniermann, Daniel Fröhlich, Thorsten Geiselhart, Matthias Hamburg, Armin Metzger, Andreas
Reuys, Erhardt Wunderlich.

This syllabus A4Q Software Development Engineer in Test (A4Q-SDET Foundation Level) Version 2022
("the Work"), is copyrighted.

The owner of the exclusive rights to use the Work is German Testing Board e. V. (GTB).

The use of the Work - unless permitted under the following provisions and the German Copyright and
Related Rights Act of September 9, 1965 (UrhG) - is only permitted with the express consent of the
GTB. This applies in particular to reproduction, distribution, editing, modification, translation,
microfilming, storage and processing in electronic systems and making available to the public.

Nevertheless, the use of the Work, including the adoption of the wording, order and numbering of the
chapter headings contained in the Work, is permitted for the purpose of preparing publications.

The use of the information contained in the Work is at the sole risk of the user. In particular, the GTB
does not guarantee the completeness, technical accuracy, compliance with legal requirements or
standards, or the economic usefulness of the information. No product recommendations are made by
this document.

The liability of the GTB towards the user of the Work is otherwise limited to intent and gross negligence.
Any use of the Work or parts thereof is only permitted if the GTB is named as the owner of the exclusive
rights of use and the authors named as the source.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 3 of 62 28.04.2022

© GTB

Authors

For authors of, and contributors to the original edition CTFL 2018 V3.1 see [ISTQB_FL_SYL].

For authors of, and contributors to the original edition CTAL-TTA V4.0 see [ISTQB_ATTA_SYL].

Authors of the German & English hands-on levels of competency for A4Q-SDET Foundation Level as
well as the selection of learning objectives from the above syllabi: Members of the GTB Working Group
SDET Foundation Level: Jürgen Beniermann, Daniel Fröhlich, Thorsten Geiselhart, Matthias Hamburg,
Armin Metzger, Andreas Reuys, Erhardt Wunderlich.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 4 of 62 28.04.2022

© GTB

Revision History of this document

Version Date Remarks

A4Q-TF4D 2021 V1.0 19.03.2021 Testing Foundations for Developers

A4Q-SDET Foundation
Level 2022

28.04.2022 Software Development Engineer in Test

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 5 of 62 28.04.2022

© GTB

Revision History of the original documents

For a revision history of the original edition CTFL 2018 V3.1 see [ISTQB_FL_SYL].

For a revision history of the original edition CTAL-TTA V4.0 see [ISTQB_ATTA_SYL].

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 6 of 62 28.04.2022

© GTB

Table of Contents

Foundation Level ...1

Copyright Notice ...2

Authors ...3

Revision History of this document ...4

Revision History of the original documents ..5

Table of Contents..6

Acknowledgements ...9

0 Introduction to this Syllabus .. 10

0.1 Purpose of this Syllabus ... 10

0.2 Software Development Engineer in Test (A4Q-SDET Foundation Level) 10

0.3 Business Outcomes .. 11

0.4 Examinable Learning Objectives and Cognitive Levels of Knowledge 11

0.5 Hands-on Levels of Competency .. 12

0.6 The Examination... 12

0.7 Gender-neutral wording .. 12

0.8 Accreditation... 13

0.9 How this Syllabus is Organized ... 13

1 Fundamentals of Testing – 110 minutes ... 14

1.1 What is Testing? ... 15

1.1.1 Typical Objectives of Testing .. 15

1.1.2 Testing and Debugging .. 16

1.2 Why is Testing necessary? ... 16

1.2.1 Testing’s Contributions to Success ... 16

1.2.2 Quality Assurance and Testing ... 17

1.2.3 Errors, Defects, and Failures .. 17

1.2.4 Defects, Root Causes and Effects .. 18

1.3 Seven Testing Principles .. 18

1.4 Test Process (non-exam relevant) .. 19

1.4.1 Test Process in Context (non-exam relevant) ... 19

1.4.2 Test Activities and Tasks (non-exam relevant) .. 20

1.4.3 Test Work Products (non-exam relevant) .. 24

1.4.4 Traceability between the Test Basis and Test Work Products (non-exam relevant) 26

2 Testing Throughout the Software Development Lifecycle – 70 minutes ... 27

2.1 Test Levels (non-exam relevant) ... 28

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 7 of 62 28.04.2022

© GTB

2.1.1 Component Testing (non-exam relevant) .. 28

2.1.2 Integration Testing (non-exam relevant)... 29

2.1.3 System Testing (non-exam relevant) .. 32

2.1.4 Acceptance Testing (non-exam relevant) ... 33

2.2 Test Types ... 36

2.2.1 Functional Testing .. 36

2.2.2 Non-functional Testing.. 37

2.2.3 White-box Testing .. 37

2.2.4 Change-related Testing .. 38

2.3 Maintenance Testing .. 38

2.3.1 Triggers for Maintenance .. 39

2.3.2 Impact Analysis for Maintenance .. 39

3 Static Testing – 225 minutes .. 40

3.1 Static Testing Basics (non-exam relevant) .. 42

3.1.1 Work Products that Can Be Examined by Static Testing (non-exam relevant) 42

3.1.2 Benefits of Static Testing (non-exam relevant) .. 42

3.1.3 Differences between Static and Dynamic Testing (non-exam relevant) 43

3.2 Applying Review Techniques .. 44

3.2.1 Applying Review Techniques .. 44

3.3 Static Analysis .. 45

3.3.1 Control Flow Analysis ... 45

3.3.2 Data Flow Analysis ... 45

3.3.3 Using Static Analysis for Improving Maintainability .. 46

4 Test Techniques – 450 minutes .. 48

4.1 Test Techniques ... 51

4.1.1 Categories of Test Techniques and their Characteristics ... 51

4.2 Black-box Test Techniques ... 52

4.2.1 Equivalence Partitioning ... 52

4.2.2 Boundary Value Analysis .. 53

4.2.3 Decision Table Testing ... 53

4.2.4 State Transition Testing .. 54

4.2.5 Use Case Testing ... 54

4.3 White-box Test Techniques .. 55

4.3.1 Statement Testing and Coverage ... 55

4.3.2 Decision Testing and Coverage .. 55

4.3.3 The Value of Statement and Decision Testing .. 56

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 8 of 62 28.04.2022

© GTB

4.3.4 Modified Condition/Decision Coverage (MC/DC) Testing .. 56

4.4 Experience-based Test Techniques (non-exam relevant) .. 57

4.4.1 Error Guessing (non-exam relevant) ... 57

4.4.2 Exploratory Testing (non-exam relevant) .. 58

4.4.3 Checklist-based Testing (non-exam relevant) ... 58

5 References .. 59

5.1 Standards ... 59

5.2 ISTQB® documents .. 60

5.3 Books and Articles .. 60

6 Appendix.. 62

6.1 Overview Learning Objectives... 62

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 9 of 62 28.04.2022

© GTB

Acknowledgements

This document A4Q Software Development Engineer in Test (A4Q-SDET Foundation Level) was
formally published on 03/19/2021 by A4Q and GTB. On 04/15/2022, the document was renamed to A4Q
Software Development Engineer in Test - Foundation Level (A4Q SDET Foundation Level).

The A4Q and the GTB would like to thank the members of the GTB working group SDET: Jürgen
Beniermann, Daniel Fröhlich, Thorsten Geiselhart, Matthias Hamburg, Armin Metzger, Andreas Reuys,
Erhardt Wunderlich for their commitment and participation in the realization of this syllabus.

The team thanks the reviewers for their review findings on the composition of that syllabus:

Arne Becher, Florian Fieber, Dietrich Leimsner, Elke Mai, Carsten Weise.

The team thanks the back office for the technical assembly of the syllabi from the original documents.

The team, A4Q and the GTB would like to thank Andreas Spillner, the "father to that thought" of this
syllabus with " Testing Foundations for Developers". He had the idea to establish a syllabus tailored to
the demands of developers by a targeted selection of learning objectives from the ISTQB Certified
Tester Foundation Level and additions. With the appropriate training, developers can gain or deepen
the knowledge of the testing foundations required for their work without the fear of being turned into a
tester. The acquired knowledge bridges the gap between developers and testers and significantly
improves communication between them. His book "Lean Testing für C++-Programmierer" (Lean Testing
for C++-Programmers), published by dpunkt.verlag together with Ulrich Breymann, was written with the
idea of illustrating the advantages of systematic testing for developers. It describes all the fundamental
test techniques for developer testing and explains them in concrete examples, up to the creation of the
test cases (www.leantesting.de).

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 10 of 62 28.04.2022

© GTB

0 Introduction to this Syllabus

0.1 Purpose of this Syllabus

This syllabus defines the testing foundations for developers, based on the Foundation Level and the
Advanced Level Technical Test Analyst of the Software Testing Qualifications Program of the
International Software Testing Qualifications Board (hereinafter referred to as ISTQB®).

The GTB provides this syllabus as follows:

1. To training providers, to produce courseware and determine appropriate teaching methods.
2. To certification candidates, to prepare for the certification exam (either as part of a training course or

independently).
3. To the international software and systems engineering community, to advance the profession of

software and systems testing, and as a basis for books and professional articles.

The GTB may allow other entities to use this syllabus for other purposes, provided they seek and obtain
prior written permission from the GTB.

0.2 Software Development Engineer in Test (A4Q-SDET Foundation
Level)

The goal of this syllabus is to teach testing skills to developers, not to transform developers into testers.

Software Development Engineer in Test (SDET Foundation Level) is based on the Certified Tester
training program. They are intended to address the necessary testing skills in all lifecycles, regardless
of whether there is a specific "tester" role.

This syllabus is aimed especially at software developers, but also at people in the role of product owner,
project manager, quality manager, software development manager, system analyst (business analyst),
IT manager or management consultant who want to acquire the basic testing skills for developers.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 11 of 62 28.04.2022

© GTB

0.3 Business Outcomes

This section lists the business outcomes that can be expected of candidates with A4Q-SDET Foundation
Level certification.

An A4Q-SDET Foundation Level is able to ...

SDET-BO1 …promote efficient and effective communication by using a common vocabulary for
 software testing.1

SDET-BO2 …understand fundamental concepts of software testing.2

SDET-BO3 …use established black-box techniques for designing tests.3

SDET-BO4 …use established white-box techniques for designing tests.4

SDET-BO5 …implement tests according to given test designs.

SDET-BO6 …execute implemented tests and report results.

SDET-BO7 …improve the quality characteristics of code and architecture by making use of different
 analysis techniques.5

0.4 Examinable Learning Objectives and Cognitive Levels of Knowledge

Learning objectives support the business outcomes and are used to create the Certified Tester
Foundation Level exams.

In general, all contents of this syllabus are examinable at a K1 level, except for the Introduction and
Appendices. That is, the candidate may be asked to recognize, remember, or recall a keyword or
concept mentioned in any of the chapters. The knowledge levels of the specific learning objectives are
shown at the beginning of each chapter, and classified as follows:

 K1: remember

 K2: understand

 K3: apply

The definitions of all terms listed as keywords just below chapter headings shall be remembered (K1),
even if not explicitly mentioned in the learning objectives.

The syllabus contains learning objectives that are explicitly marked as non-exam relevant 6. These
learning objectives include further knowledge required to complete the testing foundations for
developers. The core elements of these learning objectives are provided in an overview at K1 level.

1 Taken over from FL-BO1 [ISTQB_FL_OVW]
2 Taken over from FL-BO2 [ISTQB_FL_OVW]
3 Adapted from FL-BO5 [ISTQB_FL_OVW]
4 Adapted from TTA3 [ISTQB_AL_OVW]
5 Adapted from TTA3 [ISTQB_AL_OVW]
6 Note: Below, all parts of the syllabus that are non-exam relevant, but set a meaningful context for various reasons,

are shown in blue italics.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 12 of 62 28.04.2022

© GTB

0.5 Hands-on Levels of Competency

In Software Development Engineer in Test, the concept of Hands-On Objectives which focus on practical
skills and competencies is applied.

Competencies can be achieved by performing hands-on exercises, such as those shown in the following
non-exhaustive list:

 Exercises for K3 level learning objectives performed using paper and pen or word
processing software.

 Setting up and using test environments.

 Testing applications on virtual and physical devices.

 Using tools to test or assist in testing related tasks.

The following levels apply to hands-on objectives:

 H0: This can include a live demo of an exercise or recorded video. Since this is not
performed by the trainee, it is not strictly an exercise.

 H1: Guided exercise. The trainees follow a sequence of steps performed by the trainer.

 H2: Exercise with hints. The trainee is given an exercise with relevant hints to enable the
exercise to be solved within the given timeframe.

 H3: Unguided exercises without hints.

0.6 The Examination

The exam Software Development Engineer in Test will be based on this syllabus. Answers to exam
questions may require knowledge based on more than one section of this syllabus. The used key terms
according to the glossary and all sections of the syllabus, unless marked as non-exam relevant 7 are
examinable, except for the introduction and appendices. Standards, books, and other ISTQB® syllabi
are included as references, but their content is not examinable, beyond what is summarized in this
syllabus itself.

The exam is multiple choice. There are 40 questions. To pass the exam, at least 65% of the questions
(i.e., 26 questions) must be answered correctly. Hands on objectives and exercises will not be examined.

Exams may be taken as part of an accredited training course or taken independently (e.g., at an exam
center or in a public exam). Completion of an accredited training course is not a prerequisite for the
exam.

0.7 Gender-neutral wording

For reasons of simpler readability, gender-neutral differentiation is omitted. In the interest of equal
treatment, all role designations apply to all genders.

7 Note: Below, all parts of the syllabus that are non-exam relevant, but set a meaningful context for various reasons,
are shown in blue italics.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 13 of 62 28.04.2022

© GTB

0.8 Accreditation

The GTB or A4Q may accredit training providers whose course material follows this syllabus. The
accreditation guidelines can be obtained from Alliance for Qualification or from the German Testing
Board. An accredited course is recognized as conforming to this syllabus and may include an A4Q-
SDET Foundation Level examination.

0.9 How this Syllabus is Organized

There are four chapters with examinable content. The main heading for each chapter specifies the time
allocated for the chapter. There is no time reference for the subchapters. For accredited training courses,
the syllabus requires a minimum of 14,25 hours of instruction, distributed across the chapters as follows:

 Chapter 1: Fundamentals of Testing - 110 minutes

 Chapter 2: Testing Throughout the Software Development Lifecycle - 70 minutes

 Chapter 3: Static Testing - 225 minutes

 Chapter 4: Test Techniques - 450 minutes

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 14 of 62 28.04.2022

© GTB

1 Fundamentals of Testing – 110 minutes
Keywords
coverage, debugging, defect, error, failure, quality, quality assurance, root cause, test analysis, test
basis, test case, test condition, test data, test design, test execution, test implementation, test object,
test objective, test oracle, test procedure, test process, test suite, testing, traceability, validation,
verification

Learning Objectives for Fundamentals of Testing
1.1 What is Testing?
FL-1.1.1 (K1) Identify typical objectives of testing

FL-1.1.2 (K2) Differentiate testing from debugging

1.2 Why is Testing necessary?
FL-1.2.1 (K2) Give examples of why testing is necessary

FL-1.2.2 (K2) Describe the relationship between testing and quality assurance and give
examples of how testing contributes to higher quality

FL-1.2.3 (K2) Distinguish between error, defect, and failure

FL-1.2.4 (K2) Distinguish between the root cause of a defect and its effects

1.3 Seven Testing Principles
FL-1.3.1 (K2) Explain the seven testing principles

1.4 Test Process (non-exam relevant)
FL-1.4.1 (K2) Explain the impact of context on the test process (non-exam relevant)

FL-1.4.2 (K2) Describe the test activities and respective tasks within the test process (non-
exam relevant)

FL-1.4.3 (K2) Differentiate the work products that support the test process (non-exam relevant)

FL-1.4.4 (K2) Explain the value of maintaining traceability between the test basis and test work
products (non-exam relevant)

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 15 of 62 28.04.2022

© GTB

1.1 What is Testing?

Software systems are an integral part of life, from business applications (e.g., banking) to consumer
products (e.g., cars). Most people have had an experience with software that did not work as expected.
Software that does not work correctly can lead to many problems, including loss of money, time, or
business reputation, and even injury or death. Software testing is a way to assess the quality of the
software and to reduce the risk of software failure in operation.

A common misperception of testing is that it only consists of running tests, i.e., executing the software
and checking the results. As described in section 1.4, software testing is a process which includes many
different activities; test execution (including checking of results) is only one of these activities. The test
process also includes activities such as test planning, analyzing, designing, and implementing tests,
reporting test progress and results, and evaluating the quality of a test object.

Some testing does involve the execution of the component or system being tested; such testing is called
dynamic testing. Other testing does not involve the execution of the component or system being tested;
such testing is called static testing. So, testing also includes reviewing work products such as
requirements, user stories, and source code.

Another common misperception of testing is that it focuses entirely on verification of requirements, user
stories, or other specifications. While testing does involve checking whether the system meets specified
requirements, it also involves validation, which is checking whether the system will meet user and other
stakeholder needs in its operational environment(s).

Test activities are organized and carried out differently in different lifecycles (see section 2.1).

1.1.1 Typical Objectives of Testing

For any given project, the objectives of testing may include:

 To prevent defects by evaluate work products such as requirements, user stories, design, and
code

 To verify whether all specified requirements have been fulfilled

 To check whether the test object is complete and validate if it works as the users and other
stakeholders expect

 To build confidence in the level of quality of the test object

 To find defects and failures by reducing the level of risk of inadequate software quality

 To provide sufficient information to stakeholders to allow them to make informed decisions,
especially regarding the level of quality of the test object

 To comply with contractual, legal, or regulatory requirements or standards, and/or to verify the
test object’s compliance with such requirements or standards

The objectives of testing can vary, depending upon the context of the component or system being tested,
the test level, and the software development lifecycle model. These differences may include, for
example:

 During component testing, one objective may be to find as many failures as possible so that the
underlying defects are identified and fixed early. Another objective may be to increase code
coverage of the component tests.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 16 of 62 28.04.2022

© GTB

 During acceptance testing, one objective may be to confirm that the system works as expected
and satisfies requirements. Another objective of this testing may be to give information to
stakeholders about the risk of releasing the system at a given time.

1.1.2 Testing and Debugging

Testing and debugging are different. Executing tests can show failures that are caused by defects in the
software. Debugging is the development activity that finds, analyzes, and fixes such defects.
Subsequent confirmation testing checks whether the fixes resolved the defects. In some cases, testers
are responsible for the initial test and the final confirmation test, while developers do the debugging,
associated component and component integration testing (continues integration). However, in Agile
development and in some other software development lifecycles, testers may be involved in debugging
and component testing.

ISO standard (ISO/IEC/IEEE 29119-1) has further information about software testing concepts.

1.2 Why is Testing necessary?

Rigorous testing of components and systems, and their associated documentation, can help reduce the
risk of failures occurring during operation. When defects are detected, and subsequently fixed, this
contributes to the quality of the components or systems. In addition, software testing may also be
required to meet contractual or legal requirements or industry-specific standards.

1.2.1 Testing’s Contributions to Success

Throughout the history of computing, it is quite common for software and systems to be delivered into
operation and, due to the presence of defects, to subsequently cause failures or otherwise not meet the
stakeholders’ needs. However, using appropriate test techniques can reduce the frequency of such
problematic deliveries, when those techniques are applied with the appropriate level of test expertise,
in the appropriate test levels, and at the appropriate points in the software development lifecycle.
Examples include:

 Having testers involved in requirements reviews or user story refinement could detect defects
in these work products. The identification and removal of requirements defects reduces the risk
of incorrect or untestable features being developed.

 Having testers work closely with system designers while the system is being designed can
increase each party’s understanding of the design and how to test it. This increased
understanding can reduce the risk of fundamental design defects and enable tests to be
identified at an early stage.

 Having testers work closely with developers while the code is under development can increase
each party’s understanding of the code and how to test it. This increased understanding can
reduce the risk of defects within the code and the tests.

 Having testers verify and validate the software prior to release can detect failures that might
otherwise have been missed, and support the process of removing the defects that caused the
failures (i.e., debugging). This increases the likelihood that the software meets stakeholder
needs and satisfies requirements.

In addition to these examples, the achievement of defined test objectives (see section 1.1.1) contributes
to overall software development and maintenance success.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 17 of 62 28.04.2022

© GTB

1.2.2 Quality Assurance and Testing

While people often use the phrase quality assurance (or just QA) to refer to testing, quality assurance
and testing are not the same, but they are related. A larger concept, quality management, ties them
together. Quality management includes all activities that direct and control an organization with regard
to quality. Among other activities, quality management includes both quality assurance and quality
control. Quality assurance is typically focused on adherence to proper processes, in order to provide
confidence that the appropriate levels of quality will be achieved. When processes are carried out
properly, the work products created by those processes are generally of higher quality, which contributes
to defect prevention. In addition, the use of root cause analysis to detect and remove the causes of
defects, along with the proper application of the findings of retrospective meetings to improve processes,
are important for effective quality assurance.

Quality control involves various activities, including test activities, that support the achievement of
appropriate levels of quality. Test activities are part of the overall software development or maintenance
process. Since quality assurance is concerned with the proper execution of the entire process, quality
assurance supports proper testing. As described in sections 1.1.1 and 1.2.1, testing contributes to the
achievement of quality in a variety of ways.

1.2.3 Errors, Defects, and Failures

A person can make an error (mistake), which can lead to the introduction of a defect (fault or bug) in the
software code or in some other related work product. An error that leads to the introduction of a defect
in one work product can trigger an error that leads to the introduction of a defect in a related work
product. For example, a requirements elicitation error can lead to a requirements defect, which then
results in a programming error that leads to a defect in the code.

If a defect in the code is executed, this may cause a failure, but not necessarily in all circumstances. For
example, some defects require very specific inputs or preconditions to trigger a failure, which may occur
rarely or never.

Errors may occur for many reasons, such as:

 Time pressure

 Human fallibility

 Inexperienced or insufficiently skilled project participants

 Miscommunication between project participants, including miscommunication about
requirements and design

 Complexity of the code, design, architecture, the underlying problem to be solved, and/or the
technologies used

 Misunderstandings about intra-system and inter-system interfaces, especially when such intra-
system and inter-system interactions are large in number

 New, unfamiliar technologies

In addition to failures caused due to defects in the code, failures can also be caused by environmental
conditions. For example, radiation, electromagnetic fields, and pollution can cause defects in firmware
or influence the execution of software by changing hardware conditions.

Not all unexpected test results are failures. False positives may occur due to errors in the way tests
were executed, or due to defects in the test data, the test environment, or other testware, or for other
reasons. The inverse situation can also occur, where similar errors or defects lead to false negatives.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 18 of 62 28.04.2022

© GTB

False negatives are tests that do not detect defects that they should have detected; false positives are
reported as defects, but aren’t actually defects.

1.2.4 Defects, Root Causes and Effects

The root causes of defects are the earliest actions or conditions that contributed to creating the defects.
Defects can be analyzed to identify their root causes, so as to reduce the occurrence of similar defects
in the future. By focusing on the most significant root causes, root cause analysis can lead to process
improvements that prevent a significant number of future defects from being introduced.

For example, suppose incorrect interest payments, due to a single line of incorrect code, result in
customer complaints. The defective code was written for a user story which was ambiguous, due to the
product owner’s misunderstanding of how to calculate interest. If a large percentage of defects exist in
interest calculations, and these defects have their root cause in similar misunderstandings, the product
owners could be trained in the topic of interest calculations to reduce such defects in the future.

In this example, the customer complaints are effects. The incorrect interest payments are failures. The
improper calculation in the code is a defect, and it resulted from the original defect, the ambiguity in the
user story. The root cause of the original defect was a lack of knowledge on the part of the product
owner, which resulted in the product owner making an error while writing the user story. The process of
root cause analysis is discussed in ISTQB-CTEL-TM and ISTQB-CTEL-ITP.

1.3 Seven Testing Principles

A number of testing principles have been suggested over the past 50 years and offer general guidelines
common for all testing.

1. Testing shows the presence of defects, not their absence
Testing can show that defects are present, but cannot prove that there are no defects. Testing reduces
the probability of undiscovered defects remaining in the software but, even if no defects are found,
testing is not a proof of correctness.

2. Exhaustive testing is impossible
Testing everything (all combinations of inputs and preconditions) is not feasible except for trivial cases.
Rather than attempting to test exhaustively, risk analysis, test techniques, and priorities should be used
to focus test efforts.

3. Early testing saves time and money
To find defects early, both static and dynamic test activities should be started as early as possible in the
software development lifecycle. Early testing is sometimes referred to as shift left. Testing early in the
software development lifecycle helps reduce or eliminate costly changes (see section 3.1).

4. Defects cluster together
A small number of modules usually contains most of the defects discovered during pre-release testing,
or is responsible for most of the operational failures. Predicted defect clusters, and the actual observed
defect clusters in test or operation, are an important input into a risk analysis used to focus the test effort
(as mentioned in principle 2).

5. Beware of the pesticide paradox
If the same tests are repeated over and over again, eventually these tests no longer find any new
defects. To detect new defects, existing tests and test data may need changing, and new tests may

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 19 of 62 28.04.2022

© GTB

need to be written. (Tests are no longer effective at finding defects, just as pesticides are no longer
effective at killing insects after a while.) In some cases, such as automated regression testing, the
pesticide paradox has a beneficial outcome, which is the relatively low number of regression defects.

6. Testing is context dependent
Testing is done differently in different contexts. For example, safety-critical industrial control software is
tested differently from an e-commerce mobile app. As another example, testing in an Agile project is
done differently than testing in a sequential software development lifecycle project (see section 2.1).

7. Absence-of-errors is a fallacy
Some organizations expect that testers can run all possible tests and find all possible defects, but
principles 2 and 1, respectively, tell us that this is impossible. Further, it is a fallacy (i.e., a mistaken
belief) to expect that just finding and fixing a large number of defects will ensure the success of a system.
For example, thoroughly testing all specified requirements and fixing all defects found could still produce
a system that is difficult to use, that does not fulfill the users’ needs and expectations, or that is inferior
compared to other competing systems.

See Myers 2011, Kaner 2002, Weinberg 2008, and Beizer 1990 for examples of these and other testing
principles.

1.4 Test Process (non-exam relevant)

There is no one universal software test process, but there are common sets of test activities without
which testing will be less likely to achieve its established objectives. These sets of test activities are a
test process. The proper, specific software test process in any given situation depends on many factors.
Which test activities are involved in this test process, how these activities are implemented, and when
these activities occur may be discussed in an organization’s test strategy.

1.4.1 Test Process in Context (non-exam relevant)

Contextual factors that influence the test process for an organization, include, but are not limited to:

 Software development lifecycle model and project methodologies being used

 Test levels and test types being considered

 Product and project risks

 Business domain

 Operational constraints, including but not limited to:

o Budgets and resources

o Timescales

o Complexity

o Contractual and regulatory requirements

 Organizational policies and practices

 Required internal and external standards

The following sections describe general aspects of organizational test processes in terms of the
following:

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 20 of 62 28.04.2022

© GTB

 Test activities and tasks

 Test work products

 Traceability between the test basis and test work products

It is very useful if the test basis (for any level or type of testing that is being considered) has measurable
coverage criteria defined. The coverage criteria can act effectively as key performance indicators (KPIs)
to drive the activities that demonstrate achievement of software test objectives (see section 1.1.1).

For example, for a mobile application, the test basis may include a list of requirements and a list of
supported mobile devices. Each requirement is an element of the test basis. Each supported device is
also an element of the test basis. The coverage criteria may require at least one test case for each
element of the test basis. Once executed, the results of these tests tell stakeholders whether specified
requirements are fulfilled and whether failures were observed on supported devices.

ISO standard (ISO/IEC/IEEE 29119-2) has further information about test processes.

1.4.2 Test Activities and Tasks (non-exam relevant)

A test process consists of the following main groups of activities:

 Test planning

 Test monitoring and control

 Test analysis

 Test design

 Test implementation

 Test execution

 Test completion

Each main group of activities is composed of constituent activities, which will be described in the
subsections below. Each constituent activity consists of multiple individual tasks, which would vary from
one project or release to another.

Further, although many of these main activity groups may appear logically sequential, they are often
implemented iteratively. For example, Agile development involves small iterations of software design,
build, and test that happen on a continuous basis, supported by on-going planning. So test activities are
also happening on an iterative, continuous basis within this software development approach. Even in
sequential software development, the stepped logical sequence of main groups of activities will involve
overlap, combination, concurrency, or omission, so tailoring these main groups of activities within the
context of the system and the project is usually required.

Test planning
Test planning involves activities that define the objectives of testing and the approach for meeting test
objectives within constraints imposed by the context (e.g., specifying suitable test techniques and tasks,
and formulating a test schedule for meeting a deadline). Test plans may be revisited based on feedback
from monitoring and control activities. Test planning is further explained in section 5.2.

Test monitoring and control
Test monitoring involves the on-going comparison of actual progress against planned progress using
any test monitoring metrics defined in the test plan. Test control involves taking actions necessary to
meet the objectives of the test plan (which may be updated over time). Test monitoring and control are

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 21 of 62 28.04.2022

© GTB

supported by the evaluation of exit criteria, which are referred to as the definition of done in some
software development lifecycle models (see ISTQB-CTFL-AT). For example, the evaluation of exit
criteria for test execution as part of a given test level may include:

 Checking test results and logs against specified coverage criteria

 Assessing the level of component or system quality based on test results and logs

 Determining if more tests are needed (e.g., if tests originally intended to achieve a certain
level of product risk coverage failed to do so, requiring additional tests to be written and
executed)

Test progress against the plan is communicated to stakeholders in test progress reports, including
deviations from the plan and information to support any decision to stop testing.

Test monitoring and control are further explained in section 5.3.

Test analysis
During test analysis, the test basis is analyzed to identify testable features and define associated test
conditions. In other words, test analysis determines “what to test” in terms of measurable coverage
criteria.

Test analysis includes the following major activities:

 Analyzing the test basis appropriate to the test level being considered, for example:

o Requirement specifications, such as business requirements, functional requirements,
system requirements, user stories, epics, use cases, or similar work products that specify
desired functional and non-functional component or system behavior

o Design and implementation information, such as system or software architecture diagrams
or documents, design specifications, call flow graphs, modelling diagrams (e.g., UML or
entity-relationship diagrams), interface specifications, or similar work products that specify
component or system structure

o The implementation of the component or system itself, including code, database metadata
and queries, and interfaces

o Risk analysis reports, which may consider functional, non-functional, and structural aspects
of the component or system

 Evaluating the test basis and test items to identify defects of various types, such as:

o Ambiguities

o Omissions

o Inconsistencies

o Inaccuracies

o Contradictions

o Superfluous statements

 Identifying features and sets of features to be tested

 Defining and prioritizing test conditions for each feature based on analysis of the test basis, and
considering functional, non-functional, and structural characteristics, other business and
technical factors, and levels of risks

 Capturing bi-directional traceability between each element of the test basis and the associated
test conditions (see sections 1.4.3 and 1.4.4)

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 22 of 62 28.04.2022

© GTB

The application of black-box, white-box, and experience-based test techniques can be useful in the
process of test analysis (see chapter 4) to reduce the likelihood of omitting important test conditions and
to define more precise and accurate test conditions.

In some cases, test analysis produces test conditions which are to be used as test objectives in test
charters. Test charters are typical work products in some types of experience-based testing (see section
4.4.2). When these test objectives are traceable to the test basis, coverage achieved during such
experience-based testing can be measured.

The identification of defects during test analysis is an important potential benefit, especially where no
other review process is being used and/or the test process is closely connected with the review process.
Such test analysis activities not only verify whether the requirements are consistent, properly expressed,
and complete, but also validate whether the requirements properly capture customer, user, and other
stakeholder needs. For example, techniques such as behavior driven development (BDD) and
acceptance test driven development (ATDD), which involve generating test conditions and test cases
from user stories and acceptance criteria prior to coding. These techniques also verify, validate, and
detect defects in the user stories and acceptance criteria (see ISTQB-CTFL-AT).

Test design
During test design, the test conditions are elaborated into high-level test cases, sets of high-level test
cases, and other testware. So, test analysis answers the question “what to test?” while test design
answers the question “how to test?”

Test design includes the following major activities:

 Designing and prioritizing test cases and sets of test cases

 Identifying necessary test data to support test conditions and test cases

 Designing the test environment and identifying any required infrastructure and tools

 Capturing bi-directional traceability between the test basis, test conditions, and test cases (see
section 1.4.4)

The elaboration of test conditions into test cases and sets of test cases during test design often involves
using test techniques (see chapter 4).

As with test analysis, test design may also result in the identification of similar types of defects in the
test basis. Also, as with test analysis, the identification of defects during test design is an important
potential benefit.

Test implementation
During test implementation, the testware necessary for test execution is created and/or completed,
including sequencing the test cases into test procedures. So, test design answers the question “how to
test?” while test implementation answers the question “do we now have everything in place to run the
tests?”

Test implementation includes the following major activities:

 Developing and prioritizing test procedures, and, potentially, creating automated test scripts

 Creating test suites from the test procedures and (if any) automated test scripts

 Arranging the test suites within a test execution schedule in a way that results in efficient test
execution (see section 5.2.4)

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 23 of 62 28.04.2022

© GTB

 Building the test environment (including, potentially, test harnesses, service virtualization,
simulators, and other infrastructure items) and verifying that everything needed has been set
up correctly

 Preparing test data and ensuring it is properly loaded in the test environment

 Verifying and updating bi-directional traceability between the test basis, test conditions, test
cases, test procedures, and test suites (see section 1.4.4)

Test design and test implementation tasks are often combined.

In exploratory testing and other types of experience-based testing, test design and implementation may
occur, and may be documented, as part of test execution. Exploratory testing may be based on test
charters (produced as part of test analysis), and exploratory tests are executed immediately as they are
designed and implemented (see section 4.4.2).

Test execution
During test execution, test suites are run in accordance with the test execution schedule.

Test execution includes the following major activities:

 Recording the IDs and versions of the test item(s) or test object, test tool(s), and testware

 Executing tests either manually or by using test execution tools

 Comparing actual results with expected results

 Analyzing anomalies to establish their likely causes (e.g., failures may occur due to defects in
the code, but false positives also may occur (see section 1.2.3)

 Reporting defects based on the failures observed see [ISTQB_FL_SYL – section 5.6 Defect
Management]

 Logging the outcome of test execution (e.g., pass, fail, blocked)

 Repeating test activities either as a result of action taken for an anomaly, or as part of the
planned testing (e.g., execution of a corrected test, confirmation testing, and/or regression
testing)

 Verifying and updating bi-directional traceability between the test basis, test conditions, test
cases, test procedures, and test results.

Test completion
Test completion activities collect data from completed test activities to consolidate experience, testware,
and any other relevant information. Test completion activities occur at project milestones such as when
a software system is released, a test project is completed (or cancelled), an Agile project iteration is
finished, a test level is completed, or a maintenance release has been completed.

Test completion includes the following major activities:

 Checking whether all defect reports are closed, entering change requests or product backlog
items for any defects that remain unresolved at the end of test execution

 Creating a test summary report to be communicated to stakeholders

 Finalizing and archiving the test environment, the test data, the test infrastructure, and other
testware for later reuse

 Handing over the testware to the maintenance teams, other project teams, and/or other
stakeholders who could benefit from its use

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 24 of 62 28.04.2022

© GTB

 Analyzing lessons learned from the completed test activities to determine changes needed for
future iterations, releases, and projects

 Using the information gathered to improve test process maturity

1.4.3 Test Work Products (non-exam relevant)

Test work products are created as part of the test process. Just as there is significant variation in the
way that organizations implement the test process, there is also significant variation in the types of work
products created during that process, in the ways those work products are organized and managed, and
in the names used for those work products. This syllabus adheres to the test process outlined above,
and the work products described in this syllabus and in the ISTQB® Glossary. ISO standard
(ISO/IEC/IEEE 29119-3) may also serve as a guideline for test work products.

Many of the test work products described in this section can be captured and managed using test
management tools and defect management tools [ISTQB_FL_SYL – section 6 Tool Support for
Testing].

Test planning work products
Test planning work products typically include one or more test plans. The test plan includes information
about the test basis, to which the other test work products will be related via traceability information (see
below and section 1.4.4), as well as exit criteria (or definition of done) which will be used during test
monitoring and control. Test plans are described in [ISTQB_FL_SYL – section 5.2 Test Planing and
Estimation].

Test monitoring and control work products
Test monitoring and control work products typically include various types of test reports, including test
progress reports produced on an ongoing and/or a regular basis, and test summary reports produced
at various completion milestones. All test reports should provide audience-relevant details about the test
progress as of the date of the report, including summarizing the test execution results once those
become available.

Test monitoring and control work products should also address project management concerns, such as
task completion, resource allocation and usage, and effort.

Test monitoring and control, and the work products created during these activities, are further explained
in [ISTQB_FL_SYL – section 5.3 Test Monitoring and Control].

Test analysis work products
Test analysis work products include defined and prioritized test conditions, each of which is ideally bi-
directionally traceable to the specific element(s) of the test basis it covers. For exploratory testing, test
analysis may involve the creation of test charters. Test analysis may also result in the discovery and
reporting of defects in the test basis.

Test design work products
Test design results in test cases and sets of test cases to exercise the test conditions defined in test
analysis. It is often a good practice to design high-level test cases, without concrete values for input
data and expected results. Such high-level test cases are reusable across multiple test cycles with
different concrete data, while still adequately documenting the scope of the test case. Ideally, each test
case is bi-directionally traceable to the test condition(s) it covers.

Test design also results in:

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 25 of 62 28.04.2022

© GTB

 the design and/or identification of the necessary test data

 the design of the test environment

 the identification of infrastructure and tools

Though the extent to which these results are documented varies significantly.

Test implementation work products
Test implementation work products include:

 Test procedures and the sequencing of those test procedures

 Test suites

 A test execution schedule

Ideally, once test implementation is complete, achievement of coverage criteria established in the test
plan can be demonstrated via bi-directional traceability between test procedures and specific elements
of the test basis, through the test cases and test conditions.

In some cases, test implementation involves creating work products using or used by tools, such as
service virtualization and automated test scripts.

Test implementation also may result in the creation and verification of test data and the test environment.
The completeness of the documentation of the data and/or environment verification results may vary
significantly.

The test data serve to assign concrete values to the inputs and expected results of test cases. Such
concrete values, together with explicit directions about the use of the concrete values, turn high-level
test cases into executable low-level test cases. The same high-level test case may use different test
data when executed on different releases of the test object. The concrete expected results which are
associated with concrete test data are identified by using a test oracle.

In exploratory testing, some test design and implementation work products may be created during test
execution, though the extent to which exploratory tests (and their traceability to specific elements of the
test basis) are documented may vary significantly.

Test conditions defined in test analysis may be further refined in test implementation.

Test execution work products
Test execution work products include:

 Documentation of the status of individual test cases or test procedures (e.g., ready to run, pass,
fail, blocked, deliberately skipped, etc.)

 Defect reports see [ISTQB_FL_SYL – section 5.6 Defect Management]

 Documentation about which test item(s), test object(s), test tools, and testware were involved
in the testing

Ideally, once test execution is complete, the status of each element of the test basis can be determined
and reported via bi-directional traceability with the associated the test procedure(s). For example, we
can say which requirements have passed all planned tests, which requirements have failed tests and/or
have defects associated with them, and which requirements have planned tests still waiting to be run.
This enables verification that the coverage criteria have been met, and enables the reporting of test
results in terms that are understandable to stakeholders.

Test completion work products

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 26 of 62 28.04.2022

© GTB

Test completion work products include test summary reports, action items for improvement of
subsequent projects or iterations, change requests or product backlog items, and finalized testware.

1.4.4 Traceability between the Test Basis and Test Work Products (non-
exam relevant)

As mentioned in section 1.4.3, test work products and the names of those work products vary
significantly. Regardless of these variations, in order to implement effective test monitoring and control,
it is important to establish and maintain traceability throughout the test process between each element
of the test basis and the various test work products associated with that element, as described above.
In addition to the evaluation of test coverage, good traceability supports:

 Analyzing the impact of changes

 Making testing auditable

 Meeting IT governance criteria

 Improving the understandability of test progress reports and test summary reports to include the
status of elements of the test basis (e.g., requirements that passed their tests, requirements
that failed their tests, and requirements that have pending tests)

 Relating the technical aspects of testing to stakeholders in terms that they can understand

 Providing information to assess product quality, process capability, and project progress against
business goals

Some test management tools provide test work product models that match part or all of the test work
products outlined in this section. Some organizations build their own management systems to organize
the work products and provide the information traceability they require.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 27 of 62 28.04.2022

© GTB

2 Testing Throughout the Software Development Lifecycle
– 70 minutes

Keywords
change-related testing, component integration testing, component testing, confirmation testing,
functional testing, impact analysis, integration testing, maintenance testing, non-functional testing,
regression testing, test basis, test case, test environment, test level, test object, test objective, test type,
white-box testing

Learning Objectives for Testing Throughout the Software Development Lifecycle
2.1 Test Levels (non-exam relevant)
FL-2.2.1 (K2) Compare the different test levels from the perspective of objectives, test basis,

test objects, typical defects and failures, and approaches and responsibilities

2.2 Test Types
FL-2.3.1 (K2) Compare functional, non-functional, and white-box testing

FL-2.3.3 (K2) Compare the purposes of confirmation testing and regression testing

2.3 Maintenance Testing
FL-2.4.1 (K2) Summarize triggers for maintenance testing

FL-2.4.2 (K2) Describe the role of impact analysis in maintenance testing

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 28 of 62 28.04.2022

© GTB

2.1 Test Levels (non-exam relevant)

Test levels are groups of test activities that are organized and managed together. Each test level is an
instance of the test process, consisting of the activities described in section 1.4, performed in relation to
software at a given level of development, from individual units or components to complete systems or,
where applicable, systems of systems. Test levels are related to other activities within the software
development lifecycle. The test levels used in this syllabus are:

 Component testing

 Integration testing

 System testing

 Acceptance testing

Test levels are characterized by the following attributes:

 Specific objectives

 Test basis, referenced to derive test cases

 Test object (i.e., what is being tested)

 Typical defects and failures

 Specific approaches and responsibilities

For every test level, a suitable test environment is required. In acceptance testing, for example, a
production-like test environment is ideal, while in component testing the developers typically use their
own development environment.

2.1.1 Component Testing (non-exam relevant)

Objectives of component testing
Component testing (also known as unit or module testing) focuses on components that are separately
testable. Objectives of component testing include:

 Reducing risk

 Verifying whether the functional and non-functional behaviors of the component are as designed
and specified

 Building confidence in the component’s quality

 Finding defects in the component

 Preventing defects from escaping to higher test levels

In some cases, especially in incremental and iterative development models (e.g., Agile) where code
changes are ongoing, automated component regression tests play a key role in building confidence that
changes have not broken existing components.

Component testing is often done in isolation from the rest of the system, depending on the software
development lifecycle model and the system, which may require mock objects, service virtualization,
harnesses, stubs, and drivers. Component testing may cover functionality (e.g., correctness of
calculations), non-functional characteristics (e.g., searching for memory leaks), and structural properties
(e.g., decision testing).

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 29 of 62 28.04.2022

© GTB

Test basis
Examples of work products that can be used as a test basis for component testing include:

 Detailed design

 Code

 Data model

 Component specifications

Test objects
Typical test objects for component testing include:

 Components, units or modules

 Code and data structures

 Classes

 Database modules

Typical defects and failures
Examples of typical defects and failures for component testing include:

 Incorrect functionality (e.g., not as described in design specifications)

 Data flow problems

 Incorrect code and logic

Defects are typically fixed as soon as they are found, often with no formal defect management. However,
when developers do report defects, this provides important information for root cause analysis and
process improvement.

Specific approaches and responsibilities
Component testing is usually performed by the developer who wrote the code, but it at least requires
access to the code being tested. Developers may alternate component development with finding and
fixing defects. Developers will often write and execute tests after having written the code for a
component. However, in Agile development especially, writing automated component test cases may
precede writing application code.

For example, consider test driven development (TDD). Test driven development is highly iterative and
is based on cycles of developing automated test cases, then building and integrating small pieces of
code, then executing the component tests, correcting any issues, and re-factoring the code. This
process continues until the component has been completely built and all component tests are passing.
Test driven development is an example of a test-first approach. While test driven development originated
in eXtreme Programming (XP), it has spread to other forms of Agile and also to sequential lifecycles
(see ISTQB-CTFL-AT).

2.1.2 Integration Testing (non-exam relevant)

Objectives of integration testing

Integration testing focuses on interactions between components or systems. Objectives of integration
testing include:

 Reducing risk

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 30 of 62 28.04.2022

© GTB

 Verifying whether the functional and non-functional behaviors of the interfaces are as
designed and specified

 Building confidence in the quality of the interfaces

 Finding defects (which may be in the interfaces themselves or within the components or
systems)

 Preventing defects from escaping to higher test levels

As with component testing, in some cases automated integration regression tests provide confidence
that changes have not broken existing interfaces, components, or systems.

There are two different levels of integration testing described in this syllabus, which may be carried out
on test objects of varying size as follows:

 Component integration testing focuses on the interactions and interfaces between integrated
components. Component integration testing is performed after component testing, and is
generally automated. In iterative and incremental development, component integration tests
are usually part of the continuous integration process.

 System integration testing focuses on the interactions and interfaces between systems,
packages, and microservices. System integration testing can also cover interactions with, and
interfaces provided by, external organizations (e.g., web services). In this case, the developing
organization does not control the external interfaces, which can create various challenges for
testing (e.g., ensuring that test-blocking defects in the external organization’s code are
resolved, arranging for test environments, etc.). System integration testing may be done after
system testing or in parallel with ongoing system test activities (in both sequential
development and iterative and incremental development).

Test basis

Examples of work products that can be used as a test basis for integration testing include:

 Software and system design

 Sequence diagrams

 Interface and communication protocol specifications

 Use cases

 Architecture at component or system level

 Workflows

 External interface definitions

Test objects

Typical test objects for integration testing include:

 Subsystems

 Databases

 Infrastructure

 Interfaces

 APIs

 Microservices

Typical defects and failures

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 31 of 62 28.04.2022

© GTB

Examples of typical defects and failures for component integration testing include:

 Incorrect data, missing data, or incorrect data encoding

 Incorrect sequencing or timing of interface calls

 Interface mismatch

 Failures in communication between components

 Unhandled or improperly handled communication failures between components

 Incorrect assumptions about the meaning, units, or boundaries of the data being passed
between components

Examples of typical defects and failures for system integration testing include:

 Inconsistent message structures between systems

 Incorrect data, missing data, or incorrect data encoding

 Interface mismatch

 Failures in communication between systems

 Unhandled or improperly handled communication failures between systems

 Incorrect assumptions about the meaning, units, or boundaries of the data being passed
between systems

 Failure to comply with mandatory security regulations

Specific approaches and responsibilities

Component integration tests and system integration tests should concentrate on the integration itself.
For example, if integrating module A with module B, tests should focus on the communication between
the modules, not the functionality of the individual modules, as that should have been covered during
component testing. If integrating system X with system Y, tests should focus on the communication
between the systems, not the functionality of the individual systems, as that should have been covered
during system testing. Functional, non-functional, and structural test types are applicable.

Component integration testing is often the responsibility of developers. System integration testing is
generally the responsibility of testers. Ideally, testers performing system integration testing should
understand the system architecture, and should have influenced integration planning.

If integration tests and the integration strategy are planned before components or systems are built,
those components or systems can be built in the order required for most efficient testing. Systematic
integration strategies may be based on the system architecture (e.g., top-down and bottom-up),
functional tasks, transaction processing sequences, or some other aspect of the system or components.
In order to simplify defect isolation and detect defects early, integration should normally be incremental
(i.e., a small number of additional components or systems at a time) rather than “big bang” (i.e.,
integrating all components or systems in one single step). A risk analysis of the most complex interfaces
can help to focus the integration testing.

The greater the scope of integration, the more difficult it becomes to isolate defects to a specific
component or system, which may lead to increased risk and additional time for troubleshooting. This is
one reason that continuous integration, where software is integrated on a component-by-component
basis (i.e., functional integration), has become common practice. Such continuous integration often
includes automated regression testing, ideally at multiple test levels.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 32 of 62 28.04.2022

© GTB

2.1.3 System Testing (non-exam relevant)

Objectives of system testing

System testing focuses on the behavior and capabilities of a whole system or product, often considering
the end-to-end tasks the system can perform and the non-functional behaviors it exhibits while
performing those tasks. Objectives of system testing include:

 Reducing risk

 Verifying whether the functional and non-functional behaviors of the system are as designed
and specified

 Validating that the system is complete and will work as expected

 Building confidence in the quality of the system as a whole

 Finding defects

 Preventing defects from escaping to higher test levels or production

For certain systems, verifying data quality may also be an objective. As with component testing and
integration testing, in some cases automated system regression tests provide confidence that changes
have not broken existing features or end-to-end capabilities. System testing often produces information
that is used by stakeholders to make release decisions. System testing may also satisfy legal or
regulatory requirements or standards.

The test environment should ideally correspond to the final target or production environment.

Test basis

Examples of work products that can be used as a test basis for system testing include:

 System and software requirement specifications (functional and non-functional)

 Risk analysis reports

 Use cases

 Epics and user stories

 Models of system behavior

 State diagrams

 System and user manuals

Test objects

Typical test objects for system testing include:

 Applications

 Hardware/software systems

 Operating systems

 System under test (SUT)

 System configuration and configuration data

Typical defects and failures

Examples of typical defects and failures for system testing include:

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 33 of 62 28.04.2022

© GTB

 Incorrect calculations

 Incorrect or unexpected system functional or non-functional behavior

 Incorrect control and/or data flows within the system

 Failure to properly and completely carry out end-to-end functional tasks

 Failure of the system to work properly in the system environment(s)

 Failure of the system to work as described in system and user manuals

Specific approaches and responsibilities

System testing should focus on the overall, end-to-end behavior of the system as a whole, both
functional and non-functional. System testing should use the most appropriate techniques (see chapter
4) for the aspect(s) of the system to be tested. For example, a decision table may be created to verify
whether functional behavior is as described in business rules.

System testing is typically carried out by independent testers who rely heavily on specifications. Defects
in specifications (e.g., missing user stories, incorrectly stated business requirements, etc.) can lead to
a lack of understanding of, or disagreements about, expected system behavior. Such situations can
cause false positives and false negatives, which waste time and reduce defect detection effectiveness,
respectively. Early involvement of testers in user story refinement or static testing activities, such as
reviews, helps to reduce the incidence of such situations.

2.1.4 Acceptance Testing (non-exam relevant)

Objectives of acceptance testing

Acceptance testing, like system testing, typically focuses on the behavior and capabilities of a whole
system or product. Objectives of acceptance testing include:

 Establishing confidence in the quality of the system as a whole

 Validating that the system is complete and will work as expected

 Verifying that functional and non-functional behaviors of the system are as specified

Acceptance testing may produce information to assess the system’s readiness for deployment and use
by the customer (end-user). Defects may be found during acceptance testing, but finding defects is often
not an objective, and finding a significant number of defects during acceptance testing may in some
cases be considered a major project risk. Acceptance testing may also satisfy legal or regulatory
requirements or standards.

Common forms of acceptance testing include the following:

 User acceptance testing

 Operational acceptance testing

 Contractual and regulatory acceptance testing

 Alpha and beta testing.

Each is described in the following four subsections.

User acceptance testing (UAT)

User acceptance testing of the system is typically focused on validating the fitness for use of the system
by intended users in a real or simulated operational environment. The main objective is building

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 34 of 62 28.04.2022

© GTB

confidence that the users can use the system to meet their needs, fulfill requirements, and perform
business processes with minimum difficulty, cost, and risk.

Operational acceptance testing (OAT)

The acceptance testing of the system by operations or systems administration staff is usually performed
in a (simulated) production environment. The tests focus on operational aspects, and may include:

 Testing of backup and restore

 Installing, uninstalling and upgrading

 Disaster recovery

 User management

 Maintenance tasks

 Data load and migration tasks

 Checks for security vulnerabilities

 Performance testing

The main objective of operational acceptance testing is building confidence that the operators or system
administrators can keep the system working properly for the users in the operational environment, even
under exceptional or difficult conditions.

Contractual and regulatory acceptance testing

Contractual acceptance testing is performed against a contract’s acceptance criteria for producing
custom-developed software. Acceptance criteria should be defined when the parties agree to the
contract. Contractual acceptance testing is often performed by users or by independent testers.

Regulatory acceptance testing is performed against any regulations that must be adhered to, such as
government, legal, or safety regulations. Regulatory acceptance testing is often performed by users or
by independent testers, sometimes with the results being witnessed or audited by regulatory agencies.

The main objective of contractual and regulatory acceptance testing is building confidence that
contractual or regulatory compliance has been achieved.

Alpha and beta testing

Alpha and beta testing are typically used by developers of commercial off-the-shelf (COTS) software
who want to get feedback from potential or existing users, customers, and/or operators before the
software product is put on the market. Alpha testing is performed at the developing organization’s site,
not by the development team, but by potential or existing customers, and/or operators or an independent
test team. Beta testing is performed by potential or existing customers, and/or operators at their own
locations. Beta testing may come after alpha testing, or may occur without any preceding alpha testing
having occurred.

One objective of alpha and beta testing is building confidence among potential or existing customers,
and/or operators that they can use the system under normal, everyday conditions, and in the operational
environment(s) to achieve their objectives with minimum difficulty, cost, and risk. Another objective may
be the detection of defects related to the conditions and environment(s) in which the system will be
used, especially when those conditions and environment(s) are difficult to replicate by the development
team.

Test basis

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 35 of 62 28.04.2022

© GTB

Examples of work products that can be used as a test basis for any form of acceptance testing include:

 Business processes

 User or business requirements

 Regulations, legal contracts and standards

 Use cases and/or user stories

 System requirements

 System or user documentation

 Installation procedures

 Risk analysis reports

In addition, as a test basis for deriving test cases for operational acceptance testing, one or more of the
following work products can be used:

 Backup and restore procedures

 Disaster recovery procedures

 Non-functional requirements

 Operations documentation

 Deployment and installation instructions

 Performance targets

 Database packages

 Security standards or regulations

Typical test objects

Typical test objects for any form of acceptance testing include:

 System under test

 System configuration and configuration data

 Business processes for a fully integrated system

 Recovery systems and hot sites (for business continuity and disaster recovery testing)

 Operational and maintenance processes

 Forms

 Reports

 Existing and converted production data

Typical defects and failures

Examples of typical defects for any form of acceptance testing include:

 System workflows do not meet business or user requirements

 Business rules are not implemented correctly

 System does not satisfy contractual or regulatory requirements

 Non-functional failures such as security vulnerabilities, inadequate performance efficiency
under high loads, or improper operation on a supported platform

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 36 of 62 28.04.2022

© GTB

Specific approaches and responsibilities

Acceptance testing is often the responsibility of the customers, business users, product owners, or
operators of a system, and other stakeholders may be involved as well.

Acceptance testing is often thought of as the last test level in a sequential development lifecycle, but it
may also occur at other times, for example:

 Acceptance testing of a COTS software product may occur when it is installed or integrated

 Acceptance testing of a new functional enhancement may occur before system testing

In iterative development, project teams can employ various forms of acceptance testing during and at
the end of each iteration, such as those focused on verifying a new feature against its acceptance criteria
and those focused on validating that a new feature satisfies the users’ needs. In addition, alpha tests
and beta tests may occur, either at the end of each iteration, after the completion of each iteration, or
after a series of iterations. User acceptance tests, operational acceptance tests, regulatory acceptance
tests, and contractual acceptance tests also may occur, either at the close of each iteration, after the
completion of each iteration, or after a series of iterations.

2.2 Test Types

A test type is a group of test activities aimed at testing specific characteristics of a software system, or
a part of a system, based on specific test objectives. Such objectives may include:

 Evaluating functional quality characteristics, such as completeness, correctness, and
appropriateness

 Evaluating non-functional quality characteristics, such as reliability, performance efficiency,
security, compatibility, and usability

 Evaluating whether the structure or architecture of the component or system is correct,
complete, and as specified

 Evaluating the effects of changes, such as confirming that defects have been fixed (confirmation
testing) and looking for unintended changes in behavior resulting from software or environment
changes (regression testing)

2.2.1 Functional Testing

Functional testing of a system involves tests that evaluate functions that the system should perform.
Functional requirements may be described in work products such as business requirements
specifications, epics, user stories, use cases, or functional specifications, or they may be
undocumented. The functions are “what” the system should do.

Functional tests should be performed at all test levels (e.g., tests for components may be based on a
component specification), though the focus is different at each level (see section 2.2).

Functional testing considers the behavior of the software, so black-box techniques may be used to
derive test conditions and test cases for the functionality of the component or system (see section 4.2).

The thoroughness of functional testing can be measured through functional coverage. Functional
coverage is the extent to which some functionality has been exercised by tests, and is expressed as a
percentage of the type(s) of element being covered. For example, using traceability between tests and
functional requirements, the percentage of these requirements which are addressed by testing can be
calculated, potentially identifying coverage gaps.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 37 of 62 28.04.2022

© GTB

Functional test design and execution may involve special skills or knowledge, such as knowledge of the
particular business problem the software solves (e.g., geological modelling software for the oil and gas
industries).

2.2.2 Non-functional Testing

Non-functional testing of a system evaluates characteristics of systems and software such as usability,
performance efficiency or security. Refer to ISO standard (ISO/IEC 25010) for a classification of software
product quality characteristics. Non-functional testing is the testing of “how well” the system behaves.

Contrary to common misperceptions, non-functional testing can and often should be performed at all
test levels, and done as early as possible. The late discovery of non-functional defects can be extremely
dangerous to the success of a project.

Black-box techniques (see section 4.2) may be used to derive test conditions and test cases for non-
functional testing. For example, boundary value analysis can be used to define the stress conditions for
performance tests.

The thoroughness of non-functional testing can be measured through non-functional coverage. Non-
functional coverage is the extent to which some type of non-functional element has been exercised by
tests, and is expressed as a percentage of the type(s) of element being covered. For example, using
traceability between tests and supported devices for a mobile application, the percentage of devices
which are addressed by compatibility testing can be calculated, potentially identifying coverage gaps.

Non-functional test design and execution may involve special skills or knowledge, such as knowledge
of the inherent weaknesses of a design or technology (e.g., security vulnerabilities associated with
particular programming languages) or the particular user base (e.g., the personas of users of healthcare
facility management systems).

Refer to ISTQB-CTAL-TA, ISTQB-CTAL-TTA, ISTQB-CTAL-SEC, and other ISTQB® specialist
modules for more details regarding the testing of non-functional quality characteristics.

2.2.3 White-box Testing

White-box testing derives tests based on the system’s internal structure or implementation. Internal
structure may include code, architecture, work flows, and/or data flows within the system (see section
4.3).

The thoroughness of white-box testing can be measured through structural coverage. Structural
coverage is the extent to which some type of structural element has been exercised by tests, and is
expressed as a percentage of the type of element being covered.

At the component testing level, code coverage is based on the percentage of component code that has
been tested, and may be measured in terms of different aspects of code (coverage items) such as the
percentage of executable statements tested in the component, or the percentage of decision outcomes
tested. These types of coverage are collectively called code coverage. At the component integration
testing level, white-box testing may be based on the architecture of the system, such as interfaces
between components, and structural coverage may be measured in terms of the percentage of
interfaces exercised by tests.

White-box test design and execution may involve special skills or knowledge, such as the way the code
is built, how data is stored (e.g., to evaluate possible database queries), and how to use coverage tools
and to correctly interpret their results.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 38 of 62 28.04.2022

© GTB

2.2.4 Change-related Testing

When changes are made to a system, either to correct a defect or because of new or changing
functionality, testing should be done to confirm that the changes have corrected the defect or
implemented the functionality correctly, and have not caused any unforeseen adverse consequences.

 Confirmation testing: After a defect is fixed, the software may be tested with all test cases that
failed due to the defect, which should be re-executed on the new software version. The software
may also be tested with new tests to cover changes needed to fix the defect. At the very least,
the steps to reproduce the failure(s) caused by the defect must be re-executed on the new
software version. The purpose of a confirmation test is to confirm whether the original defect
has been successfully fixed.

 Regression testing: It is possible that a change made in one part of the code, whether a fix or
another type of change, may accidentally affect the behavior of other parts of the code, whether
within the same component, in other components of the same system, or even in other systems.
Changes may include changes to the environment, such as a new version of an operating
system or database management system. Such unintended side-effects are called regressions.
Regression testing involves running tests to detect such unintended side-effects.

Confirmation testing and regression testing are performed at all test levels.

Especially in iterative and incremental development lifecycles (e.g., Agile), new features, changes to
existing features, and code refactoring result in frequent changes to the code, which also requires
change-related testing. Due to the evolving nature of the system, confirmation and regression testing
are very important. This is particularly relevant for Internet of Things systems where individual objects
(e.g., devices) are frequently updated or replaced.

Regression test suites are run many times and generally evolve slowly, so regression testing is a strong
candidate for automation. Automation of these tests should start early in the project [see
ISTQB_FL_SYL – Chapter 6 Tool Support for Testing].

2.3 Maintenance Testing

Once deployed to production environments, software and systems need to be maintained. Changes of
various sorts are almost inevitable in delivered software and systems, either to fix defects discovered in
operational use, to add new functionality, or to delete or alter already-delivered functionality.
Maintenance is also needed to preserve or improve non-functional quality characteristics of the
component or system over its lifetime, especially performance efficiency, compatibility, reliability,
security, , and portability.

When any changes are made as part of maintenance, maintenance testing should be performed, both
to evaluate the success with which the changes were made and to check for possible side-effects (e.g.,
regressions) in parts of the system that remain unchanged (which is usually most of the system).
Maintenance can involve planned releases and unplanned releases (hot fixes).

A maintenance release may require maintenance testing at multiple test levels, using various test types,
based on its scope. The scope of maintenance testing depends on:

 The degree of risk of the change, for example, the degree to which the changed area of software
communicates with other components or systems

 The size of the existing system

 The size of the change

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 39 of 62 28.04.2022

© GTB

2.3.1 Triggers for Maintenance

There are several reasons why software maintenance, and thus maintenance testing, takes place, both
for planned and unplanned changes.

We can classify the triggers for maintenance as follows:

 Modification, such as planned enhancements (e.g., release-based), corrective and emergency
changes, changes of the operational environment (such as planned operating system or
database upgrades), upgrades of COTS software, and patches for defects and vulnerabilities

 Migration, such as from one platform to another, which can require operational tests of the new
environment as well as of the changed software, or tests of data conversion when data from
another application will be migrated into the system being maintained

o Retirement, such as when an application reaches the end of its life. When an application or
system is retired, this can require testing of data migration or archiving if long data-retention
periods are required.

o Testing restore/retrieve procedures after archiving for long retention periods may also be
needed.

o regression testing may be needed to ensure that any functionality that remains in service
still works.

For Internet of Things systems, maintenance testing may be triggered by the introduction of completely
new or modified things, such as hardware devices and software services, into the overall system. The
maintenance testing for such systems places particular emphasis on integration testing at different levels
(e.g., network level, application level) and on security aspects, in particular those relating to personal
data.

2.3.2 Impact Analysis for Maintenance

Impact analysis evaluates the changes that were made for a maintenance release to identify the
intended consequences as well as expected and possible side effects of a change, and to identify the
areas in the system that will be affected by the change. Impact analysis can also help to identify the
impact of a change on existing tests. The side effects and affected areas in the system need to be tested
for regressions, possibly after updating any existing tests affected by the change.

Impact analysis may be done before a change is made, to help decide if the change should be made,
based on the potential consequences in other areas of the system.

Impact analysis can be difficult if:

 Specifications (e.g., business requirements, user stories, architecture) are out of date or missing

 Test cases are not documented or are out of date

 Bi-directional traceability between tests and the test basis has not been maintained

 Tool support is weak or non-existent

 The people involved do not have domain and/or system knowledge

 Insufficient attention has been paid to the software's maintainability during development

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 40 of 62 28.04.2022

© GTB

3 Static Testing – 225 minutes
Keywords
ad hoc review, checklist-based review, control flow analysis, cyclomatic complexity, data flow analysis,
definition-use pair, dynamic testing, perspective-based reading, review, role-based reviewing, scenario-
based review, static analysis, static testing

Learning Objectives for Static Testing
3.1 Static Testing Basics (non-exam relevant)
FL-3.1.1 (K1) Recognize types of software work product that can be examined by the different

static testing techniques

FL-3.1.2 (K2) Use examples to describe the value of static testing

FL-3.1.3 (K2) Explain the difference between static and dynamic techniques, considering
objectives, types of defects to be identified, and the role of these techniques within the
software lifecycle

3.2 Applying review techniques
FL-3.2.4 (K3) Apply a review technique to a work product to find defects

HO-3.2.4 (H2) Review a piece of code with a given checklist. Document the findings.

Guideline for hands-on objective:

Provide a typical code review checklist with various anomalies.

Provide a piece of code that contains several of the anomalies from the checklist. Provide a findings list
template to participants to document findings. Review the findings list with the participants.

3.3 Static Analysis
TTA-3.2.1 (K3) Use control flow analysis to detect if code has any control flow anomalies and to

measure cyclomatic complexity

HO-3.2.1 (H1) For a piece of code, use a static analysis tool to find typical control flow
anomalies. Understand the report of the tool and how the anomalies affect the product
quality characteristics.

Guideline for hands-on objective:

Provide one or more pieces of code that are syntactically correct and contain different types of control
flow anomalies mentioned in the Syllabus.

Guide the participants in running the static analysis tool and displaying the reports on control flow
anomalies. Participants shall discuss the defects found and indicate the quality characteristic affected
(functional correctness, maintainability, security etc.).

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 41 of 62 28.04.2022

© GTB

TTA-3.2.2 (K3) Use data flow analysis to detect if code has any data flow anomalies

HO-3.2.2 (H1) For a piece of code, understand the report of a static analysis tool concerning
data flow anomalies and how those anomalies affect functional correctness and
maintainability.

Guideline for hands-on objective:

Provide a piece of code that is syntactically correct and contains the main types of data flow anomalies
for some variables.

Run static code analysis, explain the data flow anomalies reported to the participants, and discuss their
impact on functional correctness or on maintainability.

TTA-3.2.3 (K3) Propose ways to improve the maintainability of code by applying static analysis

HO-3.2.3 (H2) For a piece of code violating a given set of coding standards and guidelines, fix
the maintainability defects reported by static code analysis. Subsequently confirm by
re-testing that the defects are resolved and verify that no new issues have been
introduced.

Guideline for hands-on objective:

Provide a set of coding standards and guidelines out of the ones mentioned in the Syllabus. Provide a
piece of code that is syntactically correct and contains violations against this set. Run a static analysis
tool testing the code against this given set and provide the report on deviations to the participants.

The participants shall fix the maintainability defects reported by the tool. They shall rerun the static
analysis to confirm that the defects are resolved and verify that no new issues have been introduced.

Note: TTA-3.2.4 has been removed from Advanced Level Syllabus – Technical Test Analyst v4.0

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 42 of 62 28.04.2022

© GTB

3.1 Static Testing Basics (non-exam relevant)

In contrast to dynamic testing, which requires the execution of the software being tested, static testing
relies on the manual examination of work products (i.e., reviews) or tool-driven evaluation of the code
or other work products (i.e., static analysis). Both types of static testing assess the code or other work
product being tested without actually executing the code or work product being tested.

Static analysis is important for safety-critical computer systems (e.g., aviation, medical, or nuclear
software), but static analysis has also become important and common in other settings. For example,
static analysis is an important part of security testing. Static analysis is also often incorporated into
automated software build and distribution tools, for example in Agile development, continuous delivery,
and continuous deployment.

3.1.1 Work Products that Can Be Examined by Static Testing (non-exam
relevant)

Almost any work product can be examined using static testing (reviews and/or static analysis), for
example:

 Specifications, including business requirements, functional requirements, and security
requirements

 Epics, user stories, and acceptance criteria

 Architecture and design specifications

 Code

 Testware, including test plans, test cases, test procedures, and automated test scripts

 User guides

 Web pages

 Contracts, project plans, schedules, and budget planning

 Configuration set up and infrastructure set up

 Models, such as activity diagrams, which may be used for Model-Based testing (see ISTQB-
CTFL-MBT and Kramer 2016)

Reviews can be applied to any work product that the participants know how to read and understand.
Static analysis can be applied efficiently to any work product with a formal structure (typically code or
models) for which an appropriate static analysis tool exists. Static analysis can even be applied with
tools that evaluate work products written in natural language such as requirements (e.g., checking for
spelling, grammar, and readability).

3.1.2 Benefits of Static Testing (non-exam relevant)

Static testing techniques provide a variety of benefits. When applied early in the software development
lifecycle, static testing enables the early detection of defects before dynamic testing is performed (e.g.,
in requirements or design specifications reviews, backlog refinement, etc.). Defects found early are often
much cheaper to remove than defects found later in the lifecycle, especially compared to defects found
after the software is deployed and in active use. Using static testing techniques to find defects and then
fixing those defects promptly is almost always much cheaper for the organization than using dynamic
testing to find defects in the test object and then fixing them, especially when considering the additional
costs associated with updating other work products and performing confirmation and regression testing.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 43 of 62 28.04.2022

© GTB

Additional benefits of static testing may include:

 Detecting and correcting defects more efficiently, and prior to dynamic test execution

 Identifying defects which are not easily found by dynamic testing

 Preventing defects in design or coding by uncovering inconsistencies, ambiguities,
contradictions, omissions, inaccuracies, and redundancies in requirements

 Increasing development productivity (e.g., due to improved design, more maintainable code)

 Reducing development cost and time

 Reducing testing cost and time

 Reducing total cost of quality over the software’s lifetime, due to fewer failures later in the
lifecycle or after delivery into operation

 Improving communication between team members in the course of participating in reviews

3.1.3 Differences between Static and Dynamic Testing (non-exam relevant)

Static testing and dynamic testing can have the same objectives (see section 1.1.1), such as providing
an assessment of the quality of the work products and identifying defects as early as possible. Static
and dynamic testing complement each other by finding different types of defects.

One main distinction is that static testing finds defects in work products directly rather than identifying
failures caused by defects when the software is run. A defect can reside in a work product for a very
long time without causing a failure. The path where the defect lies may be rarely exercised or hard to
reach, so it will not be easy to construct and execute a dynamic test that encounters it. Static testing
may be able to find the defect with much less effort.

Another distinction is that static testing can be used to improve the consistency and internal quality of
work products, while dynamic testing typically focuses on externally visible behaviors.

Compared with dynamic testing, typical defects that are easier and cheaper to find and fix through static
testing include:

 Requirement defects (e.g., inconsistencies, ambiguities, contradictions, omissions,
inaccuracies, and redundancies)

 Design defects (e.g., inefficient algorithms or database structures, high coupling, low cohesion)

 Coding defects (e.g., variables with undefined values, variables that are declared but never
used, unreachable code, duplicate code)

 Deviations from standards (e.g., lack of adherence to coding standards)

 Incorrect interface specifications (e.g., different units of measurement used by the calling
system than by the called system)

 Security vulnerabilities (e.g., susceptibility to buffer overflows)

 Gaps or inaccuracies in test basis traceability or coverage (e.g., missing tests for an acceptance
criterion)

Moreover, most types of maintainability defects can only be found by static testing (e.g., improper
modularization, poor reusability of components, code that is difficult to analyze and modify without
introducing new defects).

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 44 of 62 28.04.2022

© GTB

3.2 Applying Review Techniques

Reviews vary from informal to formal. Informal reviews are characterized by not following a defined
process and not having formal documented output. Formal reviews are characterized by team
participation, documented results of the review, and documented procedures for conducting the review.
The formality of a review process is related to factors such as the software development lifecycle model,
the maturity of the development process, the complexity of the work product to be reviewed, any legal
or regulatory requirements, and/or the need for an audit trail.

The focus of a review depends on the agreed objectives of the review (e.g., finding defects, gaining
understanding, educating participants such as testers and new team members, or discussing and
deciding by consensus).

ISO standard (ISO/IEC 20246) contains more in-depth descriptions of the review process for work
products, including roles and review techniques.

3.2.1 Applying Review Techniques

There are a number of review techniques that can be applied during the individual review (i.e., individual
preparation) activity to uncover defects. These techniques can be used across the review types
described above. The effectiveness of the techniques may differ depending on the type of review used.
Examples of different individual review techniques for various review types are listed below.

Ad hoc
In an ad hoc review, reviewers are provided with little or no guidance on how this task should be
performed. Reviewers often read the work product sequentially, identifying and documenting issues as
they encounter them. Ad hoc reviewing is a commonly used technique needing little preparation. This
technique is highly dependent on reviewer skills and may lead to many duplicate issues being reported
by different reviewers.

Checklist-based
A checklist-based review is a systematic technique, whereby the reviewers detect issues based on
checklists that are distributed at review initiation (e.g., by the facilitator). A review checklist consists of a
set of questions based on potential defects, which may be derived from experience. Checklists should
be specific to the type of work product under review and should be maintained regularly to cover issue
types missed in previous reviews. The main advantage of the checklist-based technique is a systematic
coverage of typical defect types. Care should be taken not to simply follow the checklist in individual
reviewing, but also to look for defects outside the checklist.

Scenarios and dry runs
In a scenario-based review, reviewers are provided with structured guidelines on how to read through
the work product. A scenario-based review supports reviewers in performing “dry runs” on the work
product based on expected usage of the work product (if the work product is documented in a suitable
format such as use cases). These scenarios provide reviewers with better guidelines on how to identify
specific defect types than simple checklist entries. As with checklist-based reviews, in order not to miss
other defect types (e.g., missing features), reviewers should not be constrained to the documented
scenarios.

Perspective-based
In perspective-based reading, similar to a role-based review, reviewers take on different stakeholder
viewpoints in individual reviewing. Typical stakeholder viewpoints include end user, marketing, designer,

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 45 of 62 28.04.2022

© GTB

tester, or operations. Using different stakeholder viewpoints leads to more depth in individual reviewing
with less duplication of issues across reviewers.

In addition, perspective-based reading also requires the reviewers to attempt to use the work product
under review to generate the product they would derive from it. For example, a tester would attempt to
generate draft acceptance tests if performing a perspective-based reading on a requirements
specification to see if all the necessary information was included. Further, in perspective-based reading,
checklists are expected to be used.

Empirical studies have shown perspective-based reading to be the most effective general technique for
reviewing requirements and technical work products. A key success factor is including and weighing
different stakeholder viewpoints appropriately, based on risks. See Shul 2000 for details on perspective-
based reading, and Sauer 2000 for the effectiveness of different review techniques.

Role-based
A role-based review is a technique in which the reviewers evaluate the work product from the
perspective of individual stakeholder roles. Typical roles include specific end user types (experienced,
inexperienced, senior, child, etc.), and specific roles in the organization (user administrator, system
administrator, performance tester, etc.). The same principles apply as in perspective-based reading
because the roles are similar.

3.3 Static Analysis

The objective of static analysis is to detect actual or potential defects in code and system architecture
and to improve their maintainability.

3.3.1 Control Flow Analysis
Control flow analysis is the static technique where the steps followed through a program are analyzed
through the use of a control flow graph , usually with the use of a tool. There are a number of anomalies
which can be found in a system using this technique, including loops that are badly designed (e.g.,
having multiple entry points or that do not terminate), ambiguous targets of function calls in certain
languages, incorrect sequencing of operations, code that cannot be reached, uncalled functions, etc.

Control flow analysis can be used to determine cyclomatic complexity. The cyclomatic complexity is a
positive integer which represents the number of independent paths in a strongly connected graph.

The cyclomatic complexity is generally used as an indicator of the complexity of a component. Thomas
McCabe's theory [McCabe76] was that the more complex the system, the harder it would be to maintain
and the more defects it would contain. Many studies have noted this correlation between complexity and
the number of contained defects. Any component that is measured with a higher complexity should be
reviewed for possible refactoring, for example division into multiple components.

3.3.2 Data Flow Analysis
Data flow analysis covers a variety of techniques which gather information about the use of variables in
a system. The lifecycle of each variable along a control flow path is investigated, (i.e., where it is
declared, defined, used, and destroyed), since potential anomalies can be identified if these actions are
used out of sequence [Beizer90].

One common technique classifies the use of a variable as one of three atomic actions:
 when the variable is defined, declared, or initialized (e.g., x:=3)

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 46 of 62 28.04.2022

© GTB

 when the variable is used or read (e.g., if x > temp)
 when the variable is killed, destroyed, or goes out of scope (e.g., text_file_1.close, loop control

variable (i) on exit from loop)

Sequences of such actions that indicate potential anomalies include:
 definition followed by another definition or kill with no intervening use
 definition with no subsequent kill (e.g., leading to a possible memory leak for dynamically

allocated variables)
 use or kill before definition
 use or kill after a kill

Depending on the programming language, some of these anomalies may be identified by the compiler,
but a separate static analysis tool might be needed to identify the data flow anomalies. For instance, re-
definition with no intervening use is allowed in most programming languages, and may be deliberately
programmed, but it would be flagged by a data flow analysis tool as being a possible anomaly that
should be checked.

The use of control flow paths to determine the sequence of actions for a variable can lead to the reporting
of potential anomalies that cannot occur in practice. For instance, static analysis tools cannot always
identify if a control flow path is feasible, as some paths are only determined based on values assigned
to variables at run time. There is also a class of data flow analysis problems that are difficult for tools to
identify, when the analyzed data are part of data structures with dynamically assigned variables, such
as records and arrays. Static analysis tools also struggle with identifying potential data flow anomalies
when variables are shared between concurrent threads of control in a program as the sequence of
actions on data becomes difficult to predict.

In contrast to data flow analysis, which is static testing, data flow testing is dynamic testing in which test
cases are generated to exercise ‘definition-use pairs’ in program code. Data flow testing uses some of
the same concepts as data flow analysis as these definition-use pairs are control flow paths between a
definition and a subsequent use of a variable in a program.

3.3.3 Using Static Analysis for Improving Maintainability
Static analysis can be applied in several ways to improve the maintainability of code, architecture and
websites.

Poorly written, uncommented and unstructured code tends to be harder to maintain. It may require more
effort for developers to locate and analyze defects in the code, and the modification of the code to correct
a defect or add a new feature may result in further defects being introduced.

Static analysis is used to verify compliance with coding standards and guidelines; where non-compliant
code is identified, it can be updated to improve its maintainability. These standards and guidelines
describe required coding and design practices such as conventions for naming, commenting,
indentation and modularization. Note that static analysis tools generally raise warnings rather than
detect defects. These warnings (e.g., on level of complexity) may be provided even though the code
may be syntactically correct.

Modular designs generally result in more maintainable code. Static analysis tools support the
development of modular code in the following ways:

 They search for repeated code. These sections of code may be candidates for refactoring into
modules (although the runtime overhead imposed by module calls may be an issue for real-time
systems).

 They generate metrics which are valuable indicators of code modularization. These include
measures of coupling and cohesion. A system that is to have good maintainability is more likely

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 47 of 62 28.04.2022

© GTB

to have a low measure of coupling (the degree to which modules rely on each other during
execution) and a high measure of cohesion (the degree to which a module is self-contained and
focused on a single task).

 They indicate, in object-oriented code, where derived objects may have too much or too little
visibility into parent classes.

 They highlight areas in code or architecture with a high level of structural complexity.

The maintenance of a web site can also be supported using static analysis tools. Here the objective is
to check if the tree-like structure of the site is well-balanced or if there is an imbalance that will lead to:

 More difficult testing tasks
 Increased maintenance workload

In addition to evaluating maintainability, static analysis tools can also be applied to the code used for
implementing websites to check for possible exposure to security vulnerabilities such as code injection,
cookie security, cross-site scripting, resource tampering, and SQL code injection. Further details are
provided in [ISTQB_ATTA_SYL – Section 4.3 Security Testing] and in the Advanced Level Security
Testing syllabus [ISTQB_ ALSEC_SYL].

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 48 of 62 28.04.2022

© GTB

4 Test Techniques – 450 minutes
Keywords
atomic condition, black-box test technique, boundary value analysis, coverage, decision coverage,
decision table testing, decision testing, equivalence partitioning, experience-based test technique,
multiple condition testing, modified condition / decision testing, state transition testing, statement
coverage, statement testing, short-circuiting, test technique, use case testing, white-box test technique

Learning Objectives for Test Techniques
4.1 Test Techniques
FL-4.1.1 (K2) Explain the characteristics, commonalities, and differences between black-box

test techniques, white-box test techniques, and experience-based test techniques

4.2 Black-box Test Techniques
FL-4.2.1 (K3) Apply equivalence partitioning to derive test cases from given requirements

HO-4.2.1 (H2) For a given specification item, design and implement a test suite, applying
equivalence partitioning. Execute the test suite with the corresponding software.

Guideline for hands-on objective:

Provide a specification item and the corresponding software as test item. The test item shall contain
defects that can be detected by equivalence partitioning.

The participants shall design, implement and execute the test cases and verify that all partitions are
covered. If not, they shall add test cases until the test goal is reached and all defects are detected.

Optional: Fix the defects in the software and rerun the test cases to confirm that the defects are resolved
and verify that no new issues have been introduced.

The example shall lead to test cases for at least 2 valid and at least 1 invalid equivalence classes.

FL-4.2.2 (K3) Apply boundary value analysis to derive test cases from given requirements

HO-4.2.2 (H2) For a given specification item, design and implement a test suite, applying
boundary value analysis. Execute the test suite with the corresponding software.

Guideline for hands-on objective:

Provide a specification item and the corresponding software as test item. The test item shall contain
defects that can be detected by boundary value analysis.

The participants shall design, implement and execute the test cases and verify that all boundary values
are covered. If not, they shall add test cases until the test goal is reached and all defects are detected.

Optional: Fix the defects in the software and rerun the test cases to confirm that the defects are resolved
and verify that no new issues have been introduced.

The example shall lead to test cases for at least 4 boundary values (2 boundaries).

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 49 of 62 28.04.2022

© GTB

FL-4.2.3 (K3) Apply decision table testing to derive test cases from given requirements

HO-4.2.3 (H2) For a given specification item, design and implement a test suite, applying
decision table testing. Execute the test suite with the corresponding software.

Guideline for hands-on objective:

Provide a specification item and the corresponding software as test item. The test item shall contain
defects that can be detected by decision table testing.

The participants shall design, implement and execute the test cases and verify that all table entries are
covered. If not, they shall add test cases until the test goal is reached and all defects are detected.

Optional: Fix the defects in the software and rerun the test cases to confirm that the defects are resolved
and verify that no new issues have been introduced.

The table in the example shall contain at least 3 conditions.

FL-4.2.4 (K3) Apply state transition testing to derive test cases from given requirements

HO-4.2.4 (H2) For a given specification item, design and implement a test suite, applying state
transition testing. Execute the test suite with the corresponding software.

Guideline for hands-on objective:

Provide a piece of code and the corresponding software component specification. A few executable
statements should contain defects that can be detected using state transition testing (e.g., describing a
finite state machine).

The participants shall design, implement and execute the test cases and verify that all state transitions
are covered. If not, they shall add test cases until the test goal is reached and all defects are detected.

The example shall be non-trivial, leading to at least 5 test cases.

FL-4.2.5 (K2) Explain how to derive test cases from a use case

4.3 White-box Test Techniques
4.3.1 Application test
FL-4.3.1 (K2) Explain statement coverage

TTA-2.2.1 (K3) Design test cases for a given test object by applying statement testing to achieve
a defined level of coverage

HO-2.2.1 (H2) For a given specification item and a corresponding piece of code, design and
implement a test suite with the goal to reach 100% statement coverage, and verify
after execution that the test goal has been reached.

Guideline for hands-on objective:

Provide a piece of code and the corresponding software component specification. A few executable
statements should contain defects that can be detected by statement coverage.

The participants shall design, implement and execute the test cases and verify that 100% statement
coverage is reached. If not, they shall add test cases until the test goal is reached and all defects are
detected.

The example shall be non-trivial, leading to at least 3 test cases.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 50 of 62 28.04.2022

© GTB

4.3.2 Decision Testing
FL-4.3.2 (K2) Explain decision coverage

TTA-2.3.1 (K3) Design test cases for a given test object by applying the Decision test technique
to achieve a defined level of coverage

HO-2.3.1 (H2) For a given specification item and a corresponding piece of code, design and
implement a test suite with the goal to reach 100% decision coverage, and verify after
execution that the test goal has been reached.

Guideline for hands-on objective:

Provide a piece of code and the corresponding software component specification. A few decisions or
execution paths should contain defects that can be detected by decision coverage but not necessarily
by statement coverage.

The participants shall design, implement and execute the test cases and verify that 100% decision
coverage is reached. If not, they shall add test cases until the test goal is reached and all defects are
detected.

The example shall be non-trivial, leading to at least 3 test cases. It shall show the advantage compared
to statement testing.

4.3.3 The Value of Statement and Decision Testing
FL-4.3.3 (K2) Explain the value of statement and decision coverage

4.3.4 Modified Condition/Decision Coverage (MC/DC) Testing
TTA-2.4.1 (K3) Design test cases for a given test object by applying the modified

condition/decision test technique to achieve full modified condition/decision coverage
(MC/DC)

HO-2.4.1 (H2) For a given specification item and a corresponding piece of code, that contains a
decision with multiple atomic conditions, design, implement and execute a test suite
with the goal to reach 100% modified condition / decision coverage.Guideline for
hands-on objective:

Provide a piece of code that shows a decision with several independent atomic conditions and the
corresponding software development specification. The decision should contain a defect and this defect
should be identified by the test cases.

The participants shall design, implement and execute the test cases. The trainer shall verify that 100%
MC/DC coverage is reached.

The decision example shall be non-trivial, with at least 3 atomic conditions. It shall show the advantage
compared to Decision Testing. For MC/DC, manual design of the test cases is feasible, but the training
may also use a tool to either generate the inputs or verify the coverage.

4.4 Experience-based Test Techniques (non-exam relevant)
FL-4.4.1 (K2) Explain error guessing (non-exam relevant)

FL-4.4.2 (K2) Explain exploratory testing (non-exam relevant)

FL-4.4.3 (K2) Explain checklist-based testing (non-exam relevant)

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 51 of 62 28.04.2022

© GTB

4.1 Test Techniques

The purpose of a test technique, including those discussed in this section, is to help in identifying test
conditions, test cases, and test data.

The choice of which test techniques to use depends on a number of factors, including:

 Component or system complexity

 Regulatory standards

 Customer or contractual requirements

 Risk levels and types

 Available documentation

 Tester knowledge and skills

 Available tools

 Time and budget

 Software development lifecycle model

 The types of defects expected in the component or system

Some techniques are more applicable to certain situations and test levels; others are applicable to all
test levels. When creating test cases, testers generally use a combination of test techniques to achieve
the best results from the test effort.

The use of test techniques in the test analysis, test design, and test implementation activities can range
from very informal (little to no documentation) to very formal. The appropriate level of formality depends
on the context of testing, including the maturity of test and development processes, time constraints,
safety or regulatory requirements, the knowledge and skills of the people involved, and the software
development lifecycle model being followed.

4.1.1 Categories of Test Techniques and their Characteristics

In this syllabus, test techniques are classified as black-box, white-box, or experience-based.

Black-box test techniques (also called behavioral or behavior-based techniques) are based on an
analysis of the appropriate test basis (e.g., formal requirements documents, specifications, use cases,
user stories, or business processes). These techniques are applicable to both functional and non-
functional testing. Black-box test techniques concentrate on the inputs and outputs of the test object
without reference to its internal structure.

White-box test techniques (also called structural or structure-based techniques) are based on an
analysis of the architecture, detailed design, internal structure, or the code of the test object. Unlike
black-box test techniques, white-box test techniques concentrate on the structure and processing within
the test object.

Experience-based test techniques leverage the experience of developers, testers and users to design,
implement, and execute tests. These techniques are often combined with black-box and white-box test
techniques.

Common characteristics of black-box test techniques include the following:

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 52 of 62 28.04.2022

© GTB

 Test conditions, test cases, and test data are derived from a test basis that may include software
requirements, specifications, use cases, and user stories

 Test cases may be used to detect gaps between the requirements and the implementation of
the requirements, as well as deviations from the requirements

 Coverage is measured based on the items tested in the test basis and the technique applied to
the test basis

Common characteristics of white-box test techniques include:

 Test conditions, test cases, and test data are derived from a test basis that may include code,
software architecture, detailed design, or any other source of information regarding the structure
of the software

 Coverage is measured based on the items tested within a selected structure (e.g., the code or
interfaces) and the technique applied to the test basis

Common characteristics of experience-based test techniques include:

 Test conditions, test cases, and test data are derived from a test basis that may include
knowledge and experience of testers, developers, users and other stakeholders

This knowledge and experience includes expected use of the software, its environment, likely defects,
and the distribution of those defects

The international standard (ISO/IEC/IEEE 29119-4) contains descriptions of test techniques and their
corresponding coverage measures (see Craig 2002 and Copeland 2004 for more on techniques).

4.2 Black-box Test Techniques

4.2.1 Equivalence Partitioning

Equivalence partitioning divides data into partitions (also known as equivalence classes) in such a way
that all the members of a given partition are expected to be processed in the same way (see Kaner 2013
and Jorgensen 2014). There are equivalence partitions for both valid and invalid values.

 Valid values are values that should be accepted by the component or system. An equivalence
partition containing valid values is called a “valid equivalence partition.”

 Invalid values are values that should be rejected by the component or system. An equivalence
partition containing invalid values is called an “invalid equivalence partition.”

 Partitions can be identified for any data element related to the test object, including inputs,
outputs, internal values, time-related values (e.g., before or after an event) and for interface
parameters (e.g., integrated components being tested during integration testing).

 Any partition may be divided into sub partitions if required.

 Each value must belong to one and only one equivalence partition.

 When invalid equivalence partitions are used in test cases, they should be tested individually,
i.e., not combined with other invalid equivalence partitions, to ensure that failures are not
masked. Failures can be masked when several failures occur at the same time but only one is
visible, causing the other failures to be undetected.

To achieve 100% coverage with this technique, test cases must cover all identified partitions (including
invalid partitions) by using a minimum of one value from each partition. Coverage is measured as the

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 53 of 62 28.04.2022

© GTB

number of equivalence partitions tested by at least one value, divided by the total number of identified
equivalence partitions, normally expressed as a percentage. Equivalence partitioning is applicable at all
test levels.

4.2.2 Boundary Value Analysis

Boundary value analysis (BVA) is an extension of equivalence partitioning, but can only be used when
the partition is ordered, consisting of numeric or sequential data. The minimum and maximum values
(or first and last values) of a partition are its boundary values (see Beizer 1990).

For example, suppose an input field accepts a single integer value as an input, using a keypad to limit
inputs so that non-integer inputs are impossible. The valid range is from 1 to 5, inclusive. So, there are
three equivalence partitions: invalid (too low); valid; invalid (too high). For the valid equivalence partition,
the boundary values are 1 and 5. For the invalid (too high) partition, the boundary value is 6. For the
invalid (too low) partition, there is only one boundary value, 0, because this is a partition with only one
member.

In the example above, we identify two boundary values per boundary. The boundary between invalid
(too low) and valid gives the test values 0 and 1. The boundary between valid and invalid (too high)
gives the test values 5 and 6. Some variations of this technique identify three boundary values per
boundary: the values before, at, and just over the boundary. In the previous example, using three-point
boundary values, the lower boundary test values are 0, 1, and 2, and the upper boundary test values
are 4, 5, and 6 (see Jorgensen 2014).

Behavior at the boundaries of equivalence partitions is more likely to be incorrect than behavior within
the partitions. It is important to remember that both specified and implemented boundaries may be
displaced to positions above or below their intended positions, may be omitted altogether, or may be
supplemented
with unwanted additional boundaries. Boundary value analysis and testing will reveal almost all such
defects by forcing the software to show behaviors from a partition other than the one to which the
boundary value should belong.

Boundary value analysis can be applied at all test levels. This technique is generally used to test
requirements that call for a range of numbers (including dates and times). Boundary coverage for a
partition is measured as the number of boundary values tested, divided by the total number of identified
boundary test values, normally expressed as a percentage.

4.2.3 Decision Table Testing

Decision tables are a good way to record complex business rules that a system must implement. When
creating decision tables, the tester identifies conditions (often inputs) and the resulting actions (often
outputs) of the system. These form the rows of the table, usually with the conditions at the top and the
actions at the bottom. Each column corresponds to a decision rule that defines a unique combination of
conditions which results in the execution of the actions associated with that rule. The values of the
conditions and actions are usually shown as Boolean values (true or false) or discrete values (e.g., red,
green, blue), but can also be numbers or ranges of numbers. These different types of conditions and
actions might be found together in the same table.

The common notation in decision tables is as follows:

For conditions:

 Y means the condition is true (may also be shown as T or 1)

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 54 of 62 28.04.2022

© GTB

 N means the condition is false (may also be shown as F or 0)

 — means the value of the condition doesn’t matter (may also be shown as N/A)

For actions:

 X means the action should occur (may also be shown as Y or T or 1)

 Blank means the action should not occur (may also be shown as – or N or F or 0)

A full decision table has enough columns (test cases) to cover every combination of conditions. By
deleting columns that do not affect the outcome, the number of test cases can decrease considerably.
For example by removing impossible combinations of conditions. For more information on how to
collapse decision tables. (see ISTQB-CTAL-AT).

The common minimum coverage standard for decision table testing is to have at least one test case per
decision rule in the table. This typically involves covering all combinations of conditions. Coverage is
measured as the number of decision rules tested by at least one test case, divided by the total number
of decision rules, normally expressed as a percentage.

The strength of decision table testing is that it helps to identify all the important combinations of
conditions, some of which might otherwise be overlooked. It also helps in finding any gaps in the
requirements. It may be applied to all situations in which the behavior of the software depends on a
combination of conditions, at any test level.

4.2.4 State Transition Testing

Components or systems may respond differently to an event depending on current conditions or
previous history (e.g., the events that have occurred since the system was initialized). The previous
history can be summarized using the concept of states. A state transition diagram shows the possible
software states, as well as how the software enters, exits, and transitions between states. A transition
is initiated by an event (e.g., user input of a value into a field). The event results in a transition. The
same event can result in two or more different transitions from the same state. The state change may
result in the software taking an action (e.g., outputting a calculation or error message).

A state transition table shows all valid transitions and potentially invalid transitions between states, as
well as the events, and resulting actions for valid transitions. State transition diagrams normally show
only the valid transitions and exclude the invalid transitions.

Tests can be designed to cover a typical sequence of states, to exercise all states, to exercise every
transition, to exercise specific sequences of transitions, or to test invalid transitions.

State transition testing is used for menu-based applications and is widely used within the embedded
software industry. The technique is also suitable for modeling a business scenario having specific states
or for testing screen navigation. The concept of a state is abstract – it may represent a few lines of code
or an entire business process.

Coverage is commonly measured as the number of identified states or transitions tested, divided by the
total number of identified states or transitions in the test object, normally expressed as a percentage.
For more information on coverage criteria for state transition testing, (see ISTQB-CTAL-AT).

4.2.5 Use Case Testing

Tests can be derived from use cases, which are a specific way of designing interactions with software
items. They incorporate requirements for the software functions. Use cases are associated with actors

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 55 of 62 28.04.2022

© GTB

(human users, external hardware, or other components or systems) and subjects (the component or
system to which the use case is applied).

Each use case specifies some behavior that a subject can perform in collaboration with one or more
actors (UML 2.5.1 2017). A use case can be described by interactions and activities, as well as
preconditions, postconditions and natural language where appropriate. Interactions between the actors
and the subject may result in changes to the state of the subject. Interactions may be represented
graphically by work flows, activity diagrams, or business process models.

A use case can include possible variations of its basic behavior, including exceptional behavior and
error handling (system response and recovery from programming, application and communication
errors, e.g., resulting in an error message). Tests are designed to exercise the defined behaviors (basic,
exceptional or alternative, and error handling). Coverage can be measured by the number of use case
behaviors tested divided by the total number of use case behaviors, normally expressed as a
percentage.

For more information on coverage criteria for use case testing. (see the ISTQB-CTAL-AT).

4.3 White-box Test Techniques

White-box testing is based on the internal structure of the test object. White-box test techniques can be
used at all test levels, but the two code-related techniques discussed in this section are most commonly
used at the component test level. There are more advanced techniques that are used in some safety-
critical, mission-critical, or high integrity environments to achieve more thorough coverage, but those
are not discussed here. For more information on such techniques, see the ISTQB-CTAL-TTA.

4.3.1 Statement Testing and Coverage

Statement testing exercises the executable statements in the code. Coverage is measured as the
number of statements executed by the tests divided by the total number of executable statements in the
test object, normally expressed as a percentage.

Applicability
Achieving full statement coverage should be considered as a minimum for all code being tested,
although this is not always possible in practice.

Limitations/Difficulties
Achieving full statement coverage should be considered as a minimum for all code being tested,
although this is not always possible in practice due to constraints on the available time and/or effort.
Even high percentages of statement coverage may not detect certain defects in the code’s logic. In
many cases achieving 100% statement coverage is not possible due to unreachable code. Although
unreachable code is generally not considered good programming practice, it may occur, for instance, if
a switch statement must have a default case, but all possible cases are handled explicitly.

4.3.2 Decision Testing and Coverage

Decision testing exercises the decision outcomes in the code. To do this, the test cases follow the control
flows from a decision point (e.g., for an IF statement, there is one control flow for the true outcome and
one for the false outcome; for a CASE statement, there may be several possible outcomes; for a LOOP
statement there is one control flow for the true outcome of the loop condition and one for the false
outcome).

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 56 of 62 28.04.2022

© GTB

Coverage is measured as the number of decision outcomes exercised by the tests divided by the total
number of decision outcomes in the test object, normally expressed as a percentage. Note that a single
test case may exercise several decision outcomes.

Compared to the modified condition/decision and multiple condition techniques described below,
decision testing considers the entire decision as a whole and evaluates only the TRUE and FALSE
outcomes, regardless of the complexity of its internal structure.

Branch testing is often used interchangeably with decision testing, because covering all branches and
covering all decision outcomes can be achieved with the same tests. Branch testing exercises the
branches in the code, where a branch is normally considered to be an edge of the control flow graph.
For programs with no decisions, the definition of decision coverage above results in a coverage of 0/0,
which is undefined, no matter how many tests are run, while the single branch from entry to exit point
(assuming one entry and exit point) will result in 100% branch coverage being achieved. To address
this difference between the two measures, ISO 29119-4 requires at least one test to be run on code with
no decisions to achieve 100% decision coverage, so making 100% decision coverage and 100% branch
coverage equivalent for nearly all programs. Many test tools that provide coverage measures, including
those used for testing safety-related systems, employ a similar approach.

Applicability
This level of coverage should be considered when the code being tested is important or even critical
[see ISTQB_ATTA_SYL the tables in section 2.8.2 safety-related systems]. This technique can be used
for code and for any model that involves decision points, like business process models.

Limitations/Difficulties
Decision testing does not consider the details of how a decision with multiple conditions is made and
may fail to detect defects caused by combinations of the condition outcomes.

4.3.3 The Value of Statement and Decision Testing

When 100% statement coverage is achieved, it ensures that all executable statements in the code have
been tested at least once, but it does not ensure that all decision logic has been tested. Of the two white-
box techniques discussed in this syllabus, statement testing may provide less coverage than decision
testing.

When 100% decision coverage is achieved, it executes all decision outcomes, which includes testing
the true outcome and also the false outcome, even when there is no explicit false statement (e.g., in the
case of an IF statement without an else in the code). Statement coverage helps to find defects in code
that was not exercised by other tests. Decision coverage helps to find defects in code where other tests
have not taken both true and false outcomes.

Achieving 100% decision coverage guarantees 100% statement coverage (but not vice versa).

4.3.4 Modified Condition/Decision Coverage (MC/DC) Testing

Compared to decision testing, which considers the entire decision as a whole and evaluates the TRUE
and FALSE outcomes, modified condition/decision testing considers how a decision is structured when
it includes multiple conditions (where a decision is composed of only one atomic condition, it is simply
decision testing).

Each decision predicate is made up of one or more atomic conditions, each of which evaluates to a
Boolean value. These are logically combined to determine the outcome of the decision. This technique

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 57 of 62 28.04.2022

© GTB

checks that each of the atomic conditions independently and correctly affects the outcome of the overall
decision.

This technique provides a stronger level of coverage than statement and decision coverage when there
are decisions containing multiple conditions. Assuming N unique, mutually independent atomic
conditions, MC/DC for a decision can usually be achieved by exercising the decision N+1 times. Modified
condition/decision testing requires pairs of tests that show a change of a single atomic condition
outcome can independently affect the result of a decision. Note that a single test case may exercise
several condition combinations and therefore it is not always necessary to run N+1 separate test cases
to achieve MC/DC.

Applicability
This technique is used in the aerospace and automotive industries, and other industry sectors for safety-
critical systems. It is used when testing software where a failure may cause a catastrophe. Modified
condition/decision testing can be a reasonable middle ground between decision testing and multiple
condition testing (due to the large number of combinations to test). It is more rigorous than decision
testing but requires far fewer test conditions to be exercised than multiple condition testing when there
are several atomic conditions in the decision.

Limitations/Difficulties
Achieving MC/DC may be complicated when there are multiple occurrences of the same variable in a
decision with multiple conditions; when this occurs, the conditions may be “coupled”. Depending on the
decision, it may not be possible to vary the value of one condition such that it alone causes the decision
outcome to change. One approach to addressing this issue is to specify that only uncoupled atomic
conditions are tested using modified condition/decision testing . The other approach is to analyze each
decision in which coupling occurs.

Some compilers and/or interpreters are designed such that they exhibit short-circuiting behavior when
evaluating a complex decision statement in the code. That is, the executing code may not evaluate an
entire expression if the final outcome of the evaluation can be determined after evaluating only a portion
of the expression. For example, if evaluating the decision “A and B”, there is no reason to evaluate B if
A has already been evaluated as FALSE. No value of B can change the final result, so the code may
save execution time by not evaluating B. Short-circuiting may affect the ability to attain MC/DC since
some required tests may not be achievable. Usually, it is possible to configure the compiler to switch off
the short-circuiting optimization for the testing, but this may not be allowed for safety-critical applications,
where the tested code and the delivered code must be identical.

4.4 Experience-based Test Techniques (non-exam relevant)

When applying experience-based test techniques, the test cases are derived from the tester’s skill and
intuition, and their experience with similar applications and technologies. These techniques can be
helpful in identifying tests that were not easily identified by other more systematic techniques. Depending
on the tester’s approach and experience, these techniques may achieve widely varying degrees of
coverage and effectiveness. Coverage can be difficult to assess and may not be measurable with these
techniques.

Commonly used experience-based techniques are discussed in the following sections.

4.4.1 Error Guessing (non-exam relevant)

Error guessing is a technique used to anticipate the occurrence of errors, defects, and failures, based
on the tester’s knowledge, including:

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 58 of 62 28.04.2022

© GTB

 How the application has worked in the past

 What kind of errors tend to be made

 Failures that have occurred in other applications

A methodical approach to the error guessing technique is to create a list of possible errors, defects, and
failures, and design tests that will expose those failures and the defects that caused them. These error,
defect, failure lists can be built based on experience, defect and failure data, or from common knowledge
about why software fails.

4.4.2 Exploratory Testing (non-exam relevant)

In exploratory testing, informal (not pre-defined) tests are designed, executed, logged, and evaluated
dynamically during test execution. The test results are used to learn more about the component or
system, and to create tests for the areas that may need more testing.

Exploratory testing is sometimes conducted using session-based testing to structure the activity. In
session-based testing, exploratory testing is conducted within a defined time-box, and the tester uses a
test charter containing test objectives to guide the testing. The tester may use test session sheets to
document the steps followed and the discoveries made.

Exploratory testing is most useful when there are few or inadequate specifications or significant time
pressure on testing. Exploratory testing is also useful to complement other more formal testing
techniques.

Exploratory testing is strongly associated with reactive test strategies (see section 5.2.2). Exploratory
testing can incorporate the use of other black-box, white-box, and experience-based techniques.

4.4.3 Checklist-based Testing (non-exam relevant)

In checklist-based testing, testers design, implement, and execute tests to cover test conditions found
in a checklist. As part of analysis, testers create a new checklist or expand an existing checklist, but
testers may also use an existing checklist without modification. Such checklists can be built based on
experience, knowledge about what is important for the user, or an understanding of why and how
software fails.

Checklists can be created to support various test types, including functional and non-functional testing.
In the absence of detailed test cases, checklist-based testing can provide guidelines and a degree of
consistency. As these are high-level lists, some variability in the actual testing is likely to occur, resulting
in potentially greater coverage but less repeatability.

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 59 of 62 28.04.2022

© GTB

5 References

5.1 Standards

ISO/IEC/IEEE 29119-1 (2013) Software and systems engineering - Software testing - Part 1: Concepts
and definitions

ISO/IEC/IEEE 29119-2 (2013) Software and systems engineering - Software testing - Part 2: Test
processes

ISO/IEC/IEEE 29119-3 (2013) Software and systems engineering - Software testing - Part 3: Test
documentation

ISO/IEC/IEEE 29119-4 (2015) Software and systems engineering - Software testing - Part 4: Test
techniques

ISO/IEC 25010, (2011) Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) System and software quality models

ISO/IEC 20246: (2017) Software and systems engineering — Work product reviews

UML 2.5, Unified Modeling Language Reference Manual, http://www.omg.org/spec/UML/2.5.1/, 2017

The following standards are mentioned in these respective chapters.

[RTCA DO-178C/ED-12C]: Software Considerations in Airborne Systems and Equipment Certification,
RTCA/EUROCAE ED12C. 2013. Chapter 2

[ISO9126] ISO/IEC 9126-1:2001, Software Engineering – Software Product Quality Chapter 4

[ISO25010] ISO/IEC 25010 (2014) Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) System and software quality models Chapters 2 and 4

[ISO29119] ISO/IEC/IEEE 29119-4 International Standard for Software and Systems Engineering -
Software Testing Part 4: Test techniques. 2015 Chapter 2

[ISO42010] ISO/IEC/IEEE 42010:2011 Systems and software engineering - Architecture description
[ISTQB_FL_SYL - Chapter 5]

[IEC61508] IEC 61508-5 (2010) Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems, Part 5: Examples of methods for the determination of safety integrity levels
Chapter 2

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 60 of 62 28.04.2022

© GTB

5.2 ISTQB® documents

[ISTQB_GLOSSARY] Glossary of Terms used in Software Testing, Version 3.2, 2019

[ISTQB_FL_SYL] Foundation Level Syllabus, Version 2018 V3.1

[ISTQB_FL_OVW] Foundation Level Overview 2018

[ISTQB_FLAT_SYL] Foundation Level Agile Tester Syllabus, Version 2014

[ISTQB_FLPT_SYL] Foundation Level Performance Testing Syllabus, Version 2018

[ISTQB_FLMBT_SYL] Foundation Level Model-Based Testing Syllabus, Version 2015

[ISTQB_FLMAT_SYL] Foundation Level Mobile Application Testing Syllabus, 2019

[ISTQB_AL_OVIEW] Advanced Level Overview, Version 2019

[ISTQB_ALSEC_SYL] Advanced Level Security Testing Syllabus, Version 2016

[ISTQB_ALTAE_SYL] Advanced Level Test Automation Engineer Syllabus, Version 2017

[ISTQB_AL_OVW] Advanced Level TA & TTA Overview 2019

[ISTQB_ALTA_SYL] Advanced Level Test Analyst Syllabus, Version 2019

[ISTQB_ATTA_SYL] Advanced Level Technical Test Analyst Syllabus, Version 2019

[ISTQB_ALTM_SYL] Advanced Level Test Manager Syllabus, Version 2012

[ISTQB_ELTM_SYL] Expert Level Test Management Syllabus, Version 2011

[ISTQB_EITP_SYL] Expert Level Improving the Test Process Syllabus, Version 2011

5.3 Books and Articles

Beizer, B. (1990) Software Testing Techniques (2e), Van Nostrand Reinhold: Boston MA
Black, R. (2017) Agile Testing Foundations, BCS Learning & Development Ltd: Swindon UK
Black, R. (2009) Managing the Testing Process (3e), John Wiley & Sons: New York NY
Buwalda, H. et al. (2001) Integrated Test Design and Automation, Addison Wesley: Reading MA
Copeland, L. (2004) A Practitioner’s Guide to Software Test Design, Artech House: Norwood MA
Craig, R. and Jaskiel, S. (2002) Systematic Software Testing, Artech House: Norwood MA
Crispin, L. and Gregory, J. (2008) Agile Testing, Pearson Education: Boston MA
Fewster, M. and Graham, D. (1999) Software Test Automation, Addison Wesley: Harlow UK
Gilb, T. and Graham, D. (1993) Software Inspection, Addison Wesley: Reading MA
Graham, D. and Fewster, M. (2012) Experiences of Test Automation, Pearson Education: Boston MA
Gregory, J. and Crispin, L. (2015) More Agile Testing, Pearson Education: Boston MA
Jorgensen, P. (2014) Software Testing, A Craftsman’s Approach (4e), CRC Press: Boca Raton FL
Kaner, C., Bach, J. and Pettichord, B. (2002) Lessons Learned in Software Testing, John Wiley & Sons:
New York NY

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 61 of 62 28.04.2022

© GTB

Kaner, C., Padmanabhan, S. and Hoffman, D. (2013) The Domain Testing Workbook, Context-Driven
Press: New York NY
Kramer, A., Legeard, B. (2016) Model-Based Testing Essentials: Guide to the ISTQB® Certified Model-
Based Tester: Foundation Level, John Wiley & Sons: New York NY
Myers, G. (2011) The Art of Software Testing, (3e), John Wiley & Sons: New York NY
Sauer, C. (2000) “The Effectiveness of Software Development Technical Reviews: A Behaviorally
Motivated Program of Research,” IEEE Transactions on Software Engineering, Volume 26, Issue 1, pp
1-
Shull, F., Rus, I., Basili, V. July 2000. “How Perspective-Based Reading can Improve Requirement
Inspections.” IEEE Computer, Volume 33, Issue 7, pp 73-79
van Veenendaal, E. (ed.) (2004) The Testing Practitioner (Chapters 8 - 10), UTN Publishers: The
Netherlands
Wiegers, K. (2002) Peer Reviews in Software, Pearson Education: Boston MA
Weinberg, G. (2008) Perfect Software and Other Illusions about Testing, Dorset House: New York NY
Other Resources (not directly referenced in this Syllabus)
Black, R., van Veenendaal, E. and Graham, D. (2019) Foundations of Software Testing: ISTQB®
Certification (4e), Cengage Learning: London UK
Hetzel, W. (1993) Complete Guide to Software Testing (2e), QED Information Sciences: Wellesley MA

Syllabus

Software Development Engineer in Test
Foundation Level

Version 2022 EN Page 62 of 62 28.04.2022

© GTB

6 Appendix

6.1 Overview Learning Objectives

Syllabus
SDET - Foundation Level

SD
ET

-
BO

1
G

em
ei

n
SD

ET
-

BO
2

G
ru

nd
le

SD
ET

-
BO

3
Bl

ac
kb

SD
ET

-
BO

4
W

hi
te

b
SD

ET
-

BO
5

Im
pl

em
SD

ET
-

BO
6

D
ur

ch
fü

SD
ET

-
BO

7
An

w
enTime

SDET
Time
SDET &
Opt

Guidelines for Trainer / Provider / Accreditation / Exam
For HO: Competency Guideline

800 855

Chapter 1 Fundamentals of Testing 110

Keywords CTFL: debugging; failure; defect; error; root cause; quality; quality assurance; traceability;
test procedure; test analysis; test basis; test condition; test execution; test data;
testing; test design; test case; test object; test oracle; test process; test
implementation; test suite; test objective; coverage; validation; verification;

Keywords TTA:

1.1 What is
Testing?

take over

FL-1.1.1 (K1) Identify typical objectives of testing x 5 take over

FL-1.1.2 (K2) Differentiate testing from debugging x 15 take over

1.2 Why is
Testing
Necessary?
FL-1.2.1 (K2) Give examples of why testing is necessary x 15 take over

FL-1.2.2 (K2) Describe why testing is part of quality assurance and give
examples of how testing contributes to higher quality

x 15 take over

FL-1.2.3 (K2) Distinguish between error, defect and failure x x 15 take over

FL-1.2.4 (K2) Distinguish between the root cause of a defect and its effects
x x 15 take over

1.3 Seven
Testing
Principles
FL-1.3.1 (K2) Explain the seven testing principles x 15 take over

Select examples matching the lower test levels (or create new examples)

1.4 Test
Process

15 Handle chapter 1.4 in 15 - 20 minutes. No exam questions.

FL-1.4.1 (K2) Explain the impact of context on the test process Short introduction: Limit factors to the relevant test levels

FL-1.4.2 (K2) Describe the test activities and respective tasks within the
test process

The focus is on the activities analysis, design, implementation and execution, which are
performed iteratively. The other activities are performed within the development
activities.

FL-1.4.3 (K2) Differentiate the artifacts that support the test process Limit to the artifacts that are not part of the development artifacts and are therefore
created by other ways

FL-1.4.4 (K2) Explain the value of maintaining traceability between the test
basis and test artifacts

Can be briefly explained as an extension of traceability between test basis and
development artifacts.

Chapter 2 Testing Throughout the Software Development Lifecycle 70
Keywords CTFL: change-related testing; impact analysis; confirmation testing; functional testing;

integration testing; component integration testing; component testing; non-functional
testing; regression testing; test type; test basis; test case; test object; test level; test
environment; test objective; maintenance testing; white-box testing;

Keywords TTA:

2.2 Test Levels
10 Shorten to 10 minutes to provide an overview.

No exam questions.

Version 2022 EN
© GTB Page 1 of 5 28.04.2022

Syllabus
SDET - Foundation Level

FL-2.2.1

(K2) Compare the different levels of testing from the perspective
of objectives, test objects, test targets (e.g. software
characteristics), related work products, responsibilities, and types
of defects and failures to be identified

E.g. table -> 1 slide/flipchart
1st axis Test levels
2nd axis typical (goals, test basis, test objects, failures, responsibilities)

2.3 Test Types

FL-2.3.1 (K2) Compare functional, non-functional and white-box testing x x x 15 take over

FL-2.3.3 (K2) Compare the purposes of confirmation testing and regression
testing

x x 15 take over

2.4
Maintenance
Testing
FL-2.4.1 (K2) Summarize triggers for maintenance testing x 15 take over

FL-2.4.2 (K2) Describe the role of impact analysis in maintenance testing
x 15 take over

Chapter 3 Static Testing 225
Keywords CTFL: ad hoc review; checklist-based review; dynamic testing; perspective-based reading;

review; role-based reviewing; static analysis; static testing; scenario-based review;

Keywords TTA: data flow analysis; definition-use pair; control flow analysis; static analysis;
cyclomatic complexity;

3.1 Static
Testing Basics

15 Reduce core points to 15 minutes.
No exam questions

FL-3.1.1 (K1) Recognize types of software work product that can be
examined by the different static testing techniques

Reduce the examples. (Code, architectures and models)

FL-3.1.2 (K2) Use examples to describe the value of static testing Chapter 3.1.2 without the section additional benefits

FL-3.1.3

(K2) Explain the difference between static and dynamic
techniques, considering objectives, types of defects to be
identified, and the role of these techniques within the software
lifecycle

Replace by TTA Chapter 3.1

3.2 Applying
review
techniques
FL-3.2.4 (K3) Apply a review technique to a work product to find defects H2 x 60 take over

HO-3.2.4 (H2) Review a piece of code with a given checklist. Document the
findings.

x Provide a typical code review checklist with various anomalies. Provide a piece of code
that contains several of the anomalies from the checklist. Provide a findings list
template to participants to document findings. Review the findings list with the
participants.

3.3 Static
Analysis

TTA-3.2.1 (K3) Use control flow analysis to detect if code has any control
flow anomalies and to measure cyclomatic complexity

H1 x 60 take over

Version 2022 EN
© GTB Page 2 of 5 28.04.2022

Syllabus
SDET - Foundation Level

HO-3.2.1
(H1) For a piece of code, use a static analysis tool to find typical
control flow anomalies. Understand the report of the tool and how
the anomalies affect the product quality characteristics.

Provide one or more pieces of code that are syntactically correct, and contain different
types of control flow anomalies mentioned in the Syllabus.
Guide the participants in running the static analysis tool and displaying the reports on
control flow anomalies. Participants shall discuss the defects found and indicate the
quality characteristic affected (functional correctness, maintainability, security etc.).

TTA-3.2.2 (K3) Use data flow analysis to detect if code has any data flow
anomalies

H0 x 30 take over; Changed with CTAL-TA v4.0 from K2 to K3

HO-3.2.2
(H1) For a piece of code, understand the report of a static analysis
tool concerning data flow anomalies and how those anomalies
affect functional correctness and maintainability.

Provide a piece of code that is syntactically correct and contains the main types of data
flow anomalies for some variables. Run static code analysis, explain the data flow
anomalies reported to the participants, and discuss their impact on functional
correctness or on maintainability.

TTA-3.2.3 (K3) Propose ways to improve the maintainability of code by
applying static analysis

H2 x 60 take over

HO-3.2.3

(H2) For a piece of code violating a given set of coding standards
and guidelines, fix the maintainability defects reported by static
code analysis. Subsequently confirm by re-testing that the defects
are resolved and verify that no new issues have been introduced.

Provide a set of coding standards and guidelines out of the ones mentioned in the
Syllabus. Provide a piece of code that is syntactically correct and contains violations
against this set. Run a static analysis tool testing the code against this given set and
provide the report on deviations to the participants.
The participants shall fix the maintainability defects reported by the tool. They shall
rerun the static analysis to confirm that the defects are resolved and verify that no new
issues have been introduced.

Chapter 4 Test Techniques 450
Keywords CTFL: statement coverage; use case testing; equivalence partitioning; black-box test

technique; decision table testing; decision coverage; experience-based test technique;
boundary value analysis; test technique; coverage; white-box test technique; state
transition testing;

Keywords TTA: statement testing; atomic condition; decision testing; multiple condition testing;
modified condition/decision testing; white-box test technique;

4.1 Test
Techniques

FL-4.1.1
(K2) Explain the characteristics, commonalities, and differences
between black-box test techniques, white-box test techniques and
experience-based test techniques

x x x 15 take over

4.2 Black-box
Test
Techniques

FL-4.2.1 (K3) Apply equivalence partitioning to derive test cases from given
requirements

x x H2 60 take over

HO-4.2.1
(H2) For a given specification item, design and implement a test
suite, applying equivalence partitioning. Execute the test suite with
the corresponding software.

Provide a specification item and the corresponding software as test item. The test item
shall contain defects that can be detected by equivalence partitioning.

The participants shall design, implement and execute the test cases and verify that all
partitions are covered. If not, they shall add test cases until the test goal is reached and
all defects are detected.

Optional: Fix the defects in the software and rerun the test cases to confirm that the
defects are resolved and verify that no new issues have been introduced.

The example shall lead to test cases for at least 2 valid and at least 1 invalid
equivalence classes.

FL-4.2.2 (K3) Apply boundary value analysis to derive test cases from given
requirements

x x H2 60 take over

Version 2022 EN
© GTB Page 3 of 5 28.04.2022

Syllabus
SDET - Foundation Level

HO-4.2.2
(H2) For a given specification item, design and implement a test
suite, applying boundary value analysis. Execute the test suite with
the corresponding software.

Provide a specification item and the corresponding software as test item. The test item
shall contain defects that can be detected by boundary value analysis.

The participants shall design, implement and execute the test cases and verify that all
boundary values are covered. If not, they shall add test cases until the test goal is
reached and all defects are detected.

Optional: Fix the defects in the software and rerun the test cases to confirm that the
defects are resolved and verify that no new issues have been introduced.

The example shall lead to test cases for at least 4 boundary values (2 boundaries).

FL-4.2.3 (K3) Apply decision table testing to derive test cases from given
requirements

x x H2 60 take over

HO-4.2.3
(H2) For a given specification item, design and implement a test
suite, applying decision table testing. Execute the test suite with
the corresponding software.

Provide a specification item and the corresponding software as test item. The test item
shall contain defects that can be detected by decision table testing.

The participants shall design, implement and execute the test cases and verify that all
table entries are covered. If not, they shall add test cases until the test goal is reached
and all defects are detected.

Optional: Fix the defects in the software and rerun the test cases to confirm that the
defects are resolved and verify that no new issues have been introduced.

The table in the example shall contain at least 3 conditions.

FL-4.2.4 (K3) Apply state transition testing to derive test cases from given
requirements

x x H2 60 take over

HO-4.2.4
(H2) For a given specification item, design and implement a test
suite, applying state transition testing. Execute the test suite with
the corresponding software.

Provide a piece of code and the corresponding software component specification. A few
executable statements should contain defects that can be detected using state
transition testing (e.g., describing a finite state machine).

The participants shall design, implement and execute the test cases and verify that all
state transitions are covered. If not, they shall add test cases until the test goal is
reached and all defects are detected.

The example shall be non-trivial, leading to at least 5 test cases.
FL-4.2.5 (K2) Explain how to derive tests from a use case x x 15 take over

4.3 White-box
Test
Techniques
4.3.1
Statement
Testing
FL-4.3.1 (K2) Explain statement coverage x x 15

TTA-2.2.1 (K3) Design test cases for a given test object by applying
statement testing to achieve a defined level of coverage

x x H2 30

HO-2.2.1

(H2) For a given specification item and a corresponding piece of
code, design and implement a test suite with the goal to reach
100% statement coverage, and verify after execution that the test
goal has been reached.

Provide a piece of code and the corresponding software component specification. A few
executable statements should contain defects that can be detected by statement
coverage.

The participants shall design, implement and execute the test cases and verify that
100% statement coverage is reached. If not, they shall add test cases until the test goal
is reached and all defects are detected.

The example shall be non-trivial, leading to at least 3 test cases.

Combine LOs, due to redundancy the FL LO text is not included in the syllabus.

Version 2022 EN
© GTB Page 4 of 5 28.04.2022

Syllabus
SDET - Foundation Level

4.3.2 Decision
Testing
FL-4.3.2 (K2) Explain decision coverage x x 15

TTA-2.3.1 (K3) Design test cases for a given test object by applying the
Decision test technique to achieve a defined level of coverage

x x H2 30

HO-2.3.1

(H2) For a given specification item and a corresponding piece of
code, design and implement a test suite with the goal to reach
100% decision coverage, and verify after execution that the test
goal has been reached.

Provide a piece of code and the corresponding software component specification. A few
decisions or execution paths should contain defects that can be detected by decision
coverage but not necessarily by statement coverage.

The participants shall design, implement and execute the test cases and verify that
100% decision coverage is reached. If not, they shall add test cases until the test goal
is reached and all defects are detected.

The example shall be non-trivial, leading to at least 3 test cases. It shall show the
advantage compared to statement testing.

4.3.3 Value of
statement and
decision
coverage
FL-4.3.3 (K2) Explain the value of statement and decision coverage x x 15 take over

4.3.4 Modified
Condition/Deci
sion Coverage
(MC/DC)
Testing

TTA-2.4.1
(K3) Design test cases for a given test object by applying the
modified condition/decision test technique to achieve full modified
condition/decision coverage (MC/DC)

x x H2 60 take over

HO-2.4.1

(H2) For a given specification item and a corresponding piece of
code containing multiple atomic conditions in one decision,
design, implement and execute a test suite that fullfills 100%
MC/DC coverage of the decision.

Provide a piece of code that shows a decision with several independent atomic
conditions and the corresponding software development specification. The decision
should contain a defect and this defect should be identified by the test cases.

The participants shall design, implement and execute the test cases. The trainer shall
verify that 100% MC/DC coverage is reached.

The decision example shall be non-trivial, with at least 3 atomic conditions. It shall show
the advantage compared to Decision Testing. For MC/DC, manual design of the test
cases is feasible, but the training may also use a tool to either generate the inputs or
verify the coverage.

4.4 Experience-
based Test
Techniques

15 Reduce core points to 15 minutes.
No exam questions

FL-4.4.1 (K2) Explain error guessing

Common characteristics of experience-based test techniques include:
Test conditions, test cases, and test data are derived from a test basis that may include
knowledge and experience of testers, developers, users and other stakeholders.
This knowledge and experience includes expected use of the software, its environment,
likely defects, and the distribution of those defects.

FL-4.4.2 (K2) Explain exploratory testing see remarks on FL-4.4.1

FL-4.4.3 (K2) Explain checklist-based testing see remarks on FL-4.4.1

Combine LOs, due to redundancy the FL LO text is not included in the syllabus.

Version 2022 EN
© GTB Page 5 of 5 28.04.2022

