

Certified Tester

Foundation Level Extension Syllabus

Agile Tester

Version 2014

International Software Testing Qualifications Board

Copyright Notice

This document may be copied in its entirety, or extracts made, if the source is acknowledged.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 2 of 43 31 May 2014

© International Software Testing Qualifications Board

Copyright © International Software Testing Qualifications Board (hereinafter called ISTQB®).

Foundation Level Extension Agile Tester Working Group: Rex Black (Chair), Bertrand Cornanguer
(Vice Chair), Gerry Coleman (Learning Objectives Lead), Debra Friedenberg (Exam Lead), Alon
Linetzki (Business Outcomes and Marketing Lead), Tauhida Parveen (Editor), and Leo van der Aalst
(Development Lead).

Authors: Rex Black, Anders Claesson, Gerry Coleman, Bertrand Cornanguer, Istvan Forgacs, Alon
Linetzki, Tilo Linz, Leo van der Aalst, Marie Walsh, and Stephan Weber.

Internal Reviewers: Mette Bruhn-Pedersen, Christopher Clements, Alessandro Collino, Debra
Friedenberg, Kari Kakkonen, Beata Karpinska, Sammy Kolluru, Jennifer Leger, Thomas Mueller,
Tuula Pääkkönen, Meile Posthuma, Gabor Puhalla, Lloyd Roden, Marko Rytkönen, Monika
Stoecklein-Olsen, Robert Treffny, Chris Van Bael, and Erik van Veenendaal; 2013-2014.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 3 of 43 31 May 2014

© International Software Testing Qualifications Board

Revision History

Version Date Remarks

Syllabus v0.1 26JUL2013 Standalone sections

Syllabus v0.2 16SEP2013 WG review comments on v01 incorporated

Syllabus v0.3 20OCT2013 WG review comments on v02 incorporated

Syllabus v0.7 16DEC2013 Alpha review comments on v03 incorporated

Syllabus v0.71 20DEC2013 Working group updates on v07

Syllabus v0.9 30JAN2014 Beta version

Syllabus 2014 31MAY2014 GA version

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 4 of 43 31 May 2014

© International Software Testing Qualifications Board

Table of Contents

Revision History ..3
Table of Contents ...4
Acknowledgements ...6
0. Introduction to this Syllabus ..7

0.1 Purpose of this Document ..7
0.2 Overview ..7
0.3 Examinable Learning Objectives ..7

1. Agile Software Development - 150 mins. ...8
1.1 The Fundamentals of Agile Software Development ...9

1.1.1 Agile Software Development and the Agile Manifesto ...9
1.1.2 Whole-Team Approach .. 10
1.1.3 Early and Frequent Feedback .. 11

1.2 Aspects of Agile Approaches ... 11
1.2.1 Agile Software Development Approaches ... 11
1.2.2 Collaborative User Story Creation .. 13
1.2.3 Retrospectives ... 14
1.2.4 Continuous Integration ... 14
1.2.5 Release and Iteration Planning .. 16

2. Fundamental Agile Testing Principles, Practices, and Processes – 105 mins. 18
2.1 The Differences between Testing in Traditional and Agile Approaches 19

2.1.1 Testing and Development Activities .. 19
2.1.2 Project Work Products ... 20
2.1.3 Test Levels .. 21
2.1.4 Testing and Configuration Management ... 22
2.1.5 Organizational Options for Independent Testing ... 22

2.2 Status of Testing in Agile Projects .. 23
2.2.1 Communicating Test Status, Progress, and Product Quality ... 23
2.2.2 Managing Regression Risk with Evolving Manual and Automated Test Cases 24

2.3 Role and Skills of a Tester in an Agile Team ... 25
2.3.1 Agile Tester Skills .. 25
2.3.2 The Role of a Tester in an Agile Team ... 26

3. Agile Testing Methods, Techniques, and Tools – 480 mins. .. 27
3.1 Agile Testing Methods ... 28

3.1.1 Test-Driven Development, Acceptance Test-Driven Development, and Behavior-Driven
Development .. 28
3.1.2 The Test Pyramid .. 29
3.1.3 Testing Quadrants, Test Levels, and Testing Types ... 29
3.1.4 The Role of a Tester .. 30

3.2 Assessing Quality Risks and Estimating Test Effort .. 31
3.2.1 Assessing Quality Risks in Agile Projects ... 31
3.2.2 Estimating Testing Effort Based on Content and Risk ... 32

3.3 Techniques in Agile Projects .. 33
3.3.1 Acceptance Criteria, Adequate Coverage, and Other Information for Testing 33
3.3.2 Applying Acceptance Test-Driven Development ... 36
3.3.3 Functional and Non-Functional Black Box Test Design ... 36
3.3.4 Exploratory Testing and Agile Testing .. 36

3.4 Tools in Agile Projects ... 38
3.4.1 Task Management and Tracking Tools ... 38
3.4.2 Communication and Information Sharing Tools .. 39
3.4.3 Software Build and Distribution Tools ... 39
3.4.4 Configuration Management Tools... 39

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 5 of 43 31 May 2014

© International Software Testing Qualifications Board

3.4.5 Test Design, Implementation, and Execution Tools .. 40
3.4.6 Cloud Computing and Virtualization Tools .. 40

4. References ... 41
4.1 Standards ... 41
4.2 ISTQB Documents .. 41
4.3 Books ... 41
4.4 Agile Terminology ... 42
4.5 Other References.. 42

5. Index .. 43

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 6 of 43 31 May 2014

© International Software Testing Qualifications Board

Acknowledgements

This document was produced by a team from the International Software Testing Qualifications Board
Foundation Level Working Group.

The Agile Extension team thanks the review team and the National Boards for their suggestions and
input.

At the time the Foundation Level Agile Extension Syllabus was completed, the Agile Extension
Working Group had the following membership: Rex Black (Chair), Bertrand Cornanguer (Vice Chair),
Gerry Coleman (Learning Objectives Lead), Debra Friedenberg (Exam Lead), Alon Linetzki (Business
Outcomes and Marketing Lead), Tauhida Parveen (Editor), and Leo van der Aalst (Development
Lead).

Authors: Rex Black, Anders Claesson, Gerry Coleman, Bertrand Cornanguer, Istvan Forgacs, Alon
Linetzki, Tilo Linz, Leo van der Aalst, Marie Walsh, and Stephan Weber.

Internal Reviewers: Mette Bruhn-Pedersen, Christopher Clements, Alessandro Collino, Debra
Friedenberg, Kari Kakkonen, Beata Karpinska, Sammy Kolluru, Jennifer Leger, Thomas Mueller,
Tuula Pääkkönen, Meile Posthuma, Gabor Puhalla, Lloyd Roden, Marko Rytkönen, Monika
Stoecklein-Olsen, Robert Treffny, Chris Van Bael, and Erik van Veenendaal.

The team thanks also the following persons, from the National Boards and the Agile expert
community, who participated in reviewing, commenting, and balloting of the Foundation Agile
Extension Syllabus: Dani Almog, Richard Berns, Stephen Bird, Monika Bögge, Afeng Chai, Josephine
Crawford, Tibor Csöndes, Huba Demeter, Arnaud Foucal, Cyril Fumery, Kobi Halperin, Inga Hansen,
Hanne Hinz, Jidong Hu, Phill Isles, Shirley Itah, Martin Klonk, Kjell Lauren, Igal Levi, Rik Marselis,
Johan Meivert, Armin Metzger, Peter Morgan, Ninna Morin, Ingvar Nordstrom, Chris O’Dea, Klaus
Olsen, Ismo Paukamainen, Nathalie Phung, Helmut Pichler, Salvatore Reale, Stuart Reid, Hans
Rombouts, Petri Säilynoja, Soile Sainio, Lars-Erik Sandberg, Dakar Shalom, Jian Shen, Marco
Sogliani, Lucjan Stapp, Yaron Tsubery, Sabine Uhde, Stephanie Ulrich, Tommi Välimäki, Jurian Van
de Laar, Marnix Van den Ent, António Vieira Melo, Wenye Xu, Ester Zabar, Wenqiang Zheng, Peter
Zimmerer, Stevan Zivanovic, and Terry Zuo.

This document was formally approved for release by the General Assembly of the ISTQB® on May 31,
2014.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 7 of 43 31 May 2014

© International Software Testing Qualifications Board

0. Introduction to this Syllabus

0.1 Purpose of this Document

This syllabus forms the basis for the International Software Testing Qualification at the Foundation
Level for the Agile Tester. The ISTQB

®
 provides this syllabus as follows:

 To National Boards, to translate into their local language and to accredit training providers.
National Boards may adapt the syllabus to their particular language needs and modify the
references to adapt to their local publications.

 To Exam Boards, to derive examination questions in their local language adapted to the
learning objectives for each syllabus.

 To training providers, to produce courseware and determine appropriate teaching methods.

 To certification candidates, to prepare for the exam (as part of a training course or
independently).

 To the international software and systems engineering community, to advance the profession
of software and systems testing, and as a basis for books and articles.

The ISTQB® may allow other entities to use this syllabus for other purposes, provided they seek and
obtain prior written permission.

0.2 Overview

The Foundation Level Agile Tester Overview document [ISTQB_FA_OVIEW] includes the following
information:

 Business Outcomes for the syllabus

 Summary for the syllabus

 Relationships among the syllabi

 Description of cognitive levels (K-levels)

 Appendices

0.3 Examinable Learning Objectives

The Learning Objectives support the Business Outcomes and are used to create the examination for
achieving the Certified Tester Foundation Level—Agile Tester Certification. In general, all parts of this
syllabus are examinable at a K1 level. That is, the candidate will recognize, remember, and recall a
term or concept. The specific learning objectives at K1, K2, and K3 levels are shown at the beginning
of the pertinent chapter.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 8 of 43 31 May 2014

© International Software Testing Qualifications Board

1. Agile Software Development - 150 mins.

Keywords

Agile Manifesto, Agile software development, incremental development model, iterative development
model, software lifecycle, test automation, test basis, test-driven development, test oracle, user story

Learning Objectives for Agile Software Development

1.1 The Fundamentals of Agile Software Development

FA-1.1.1 (K1) Recall the basic concept of Agile software development based on the Agile
Manifesto

FA-1.1.2 (K2) Understand the advantages of the whole-team approach
FA-1.1.3 (K2) Understand the benefits of early and frequent feedback

1.2 Aspects of Agile Approaches

FA-1.2.1 (K1) Recall Agile software development approaches
FA-1.2.2 (K3) Write testable user stories in collaboration with developers and business

representatives
FA-1.2.3 (K2) Understand how retrospectives can be used as a mechanism for process

improvement in Agile projects
FA-1.2.4 (K2) Understand the use and purpose of continuous integration
FA-1.2.5 (K1) Know the differences between iteration and release planning, and how a tester

adds value in each of these activities

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 9 of 43 31 May 2014

© International Software Testing Qualifications Board

1.1 The Fundamentals of Agile Software Development

A tester on an Agile project will work differently than one working on a traditional project. Testers must
understand the values and principles that underpin Agile projects, and how testers are an integral part
of a whole-team approach together with developers and business representatives. The members in an
Agile project communicate with each other early and frequently, which helps with removing defects
early and developing a quality product.

1.1.1 Agile Software Development and the Agile Manifesto

In 2001, a group of individuals, representing the most widely used lightweight software development
methodologies, agreed on a common set of values and principles which became known as the
Manifesto for Agile Software Development or the Agile Manifesto [Agilemanifesto]. The Agile
Manifesto contains four statements of values:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

The Agile Manifesto argues that although the concepts on the right have value, those on the left have
greater value.

Individuals and Interactions

Agile development is very people-centered. Teams of people build software, and it is through
continuous communication and interaction, rather than a reliance on tools or processes, that teams
can work most effectively.

Working Software

From a customer perspective, working software is much more useful and valuable than overly detailed
documentation and it provides an opportunity to give the development team rapid feedback. In
addition, because working software, albeit with reduced functionality, is available much earlier in the
development lifecycle, Agile development can confer significant time-to-market advantage. Agile
development is, therefore, especially useful in rapidly changing business environments where the
problems and/or solutions are unclear or where the business wishes to innovate in new problem
domains.

Customer Collaboration

Customers often find great difficulty in specifying the system that they require. Collaborating directly
with the customer improves the likelihood of understanding exactly what the customer requires. While
having contracts with customers may be important, working in regular and close collaboration with
them is likely to bring more success to the project.

Responding to Change

Change is inevitable in software projects. The environment in which the business operates, legislation,
competitor activity, technology advances, and other factors can have major influences on the project
and its objectives. These factors must be accommodated by the development process. As such,
having flexibility in work practices to embrace change is more important than simply adhering rigidly to
a plan.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 10 of 43 31 May 2014

© International Software Testing Qualifications Board

Principles

The core Agile Manifesto values are captured in twelve principles:

 Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

 Welcome changing requirements, even late in development. Agile processes harness change
for the customer's competitive advantage.

 Deliver working software frequently, at intervals of between a few weeks to a few months, with
a preference to the shorter timescale.

 Business people and developers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity—the art of maximizing the amount of work not done—is essential.

 The best architectures, requirements, and designs emerge from self-organizing teams.

 At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

The different Agile methodologies provide prescriptive practices to put these values and principles into
action.

1.1.2 Whole-Team Approach

The whole-team approach means involving everyone with the knowledge and skills necessary to
ensure project success. The team includes representatives from the customer and other business
stakeholders who determine product features. The team should be relatively small; successful teams
have been observed with as few as three people and as many as nine. Ideally, the whole team shares
the same workspace, as co-location strongly facilitates communication and interaction. The whole-
team approach is supported through the daily stand-up meetings (see Section 2.2.1) involving all
members of the team, where work progress is communicated and any impediments to progress are
highlighted. The whole-team approach promotes more effective and efficient team dynamics.

The use of a whole-team approach to product development is one of the main benefits of Agile
development. Its benefits include:

 Enhancing communication and collaboration within the team

 Enabling the various skill sets within the team to be leveraged to the benefit of the project

 Making quality everyone’s responsibility

The whole team is responsible for quality in Agile projects. The essence of the whole-team approach
lies in the testers, developers, and the business representatives working together in every step of the
development process. Testers will work closely with both developers and business representatives to
ensure that the desired quality levels are achieved. This includes supporting and collaborating with
business representatives to help them create suitable acceptance tests, working with developers to
agree on the testing strategy, and deciding on test automation approaches. Testers can thus transfer
and extend testing knowledge to other team members and influence the development of the product.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 11 of 43 31 May 2014

© International Software Testing Qualifications Board

The whole team is involved in any consultations or meetings in which product features are presented,
analyzed, or estimated. The concept of involving testers, developers, and business representatives in
all feature discussions is known as the power of three [Crispin08].

1.1.3 Early and Frequent Feedback

Agile projects have short iterations enabling the project team to receive early and continuous feedback
on product quality throughout the development lifecycle. One way to provide rapid feedback is by
continuous integration (see Section 1.2.4).

When sequential development approaches are used, the customer often does not see the product
until the project is nearly completed. At that point, it is often too late for the development team to
effectively address any issues the customer may have. By getting frequent customer feedback as the
project progresses, Agile teams can incorporate most new changes into the product development
process. Early and frequent feedback helps the team focus on the features with the highest business
value, or associated risk, and these are delivered to the customer first. It also helps manage the team
better since the capability of the team is transparent to everyone. For example, how much work can
we do in a sprint or iteration? What could help us go faster? What is preventing us from doing so?

The benefits of early and frequent feedback include:

 Avoiding requirements misunderstandings, which may not have been detected until later in the
development cycle when they are more expensive to fix.

 Clarifying customer feature requests, making them available for customer use early. This way,
the product better reflects what the customer wants.

 Discovering (via continuous integration), isolating, and resolving quality problems early.

 Providing information to the Agile team regarding its productivity and ability to deliver.

 Promoting consistent project momentum.

1.2 Aspects of Agile Approaches

There are a number of Agile approaches in use by organizations. Common practices across most
Agile organizations include collaborative user story creation, retrospectives, continuous integration,
and planning for each iteration as well as for overall release. This subsection describes some of the
Agile approaches.

1.2.1 Agile Software Development Approaches

There are several Agile approaches, each of which implements the values and principles of the Agile
Manifesto in different ways. In this syllabus, three representatives of Agile approaches are considered:
Extreme Programming (XP), Scrum, and Kanban.

Extreme Programming
Extreme Programming (XP), originally introduced by Kent Beck [Beck04], is an Agile approach to
software development described by certain values, principles, and development practices.

XP embraces five values to guide development: communication, simplicity, feedback, courage, and
respect.

XP describes a set of principles as additional guidelines: humanity, economics, mutual benefit, self-
similarity, improvement, diversity, reflection, flow, opportunity, redundancy, failure, quality, baby steps,
and accepted responsibility.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 12 of 43 31 May 2014

© International Software Testing Qualifications Board

XP describes thirteen primary practices: sit together, whole team, informative workspace, energized
work, pair programming, stories, weekly cycle, quarterly cycle, slack, ten-minute build, continuous
integration, test first programming, and incremental design.

Many of the Agile software development approaches in use today are influenced by XP and its values
and principles. For example, Agile teams following Scrum often incorporate XP practices.

Scrum
Scrum is an Agile management framework which contains the following constituent instruments and
practices [Schwaber01]:

 Sprint: Scrum divides a project into iterations (called sprints) of fixed length (usually two to four
weeks).

 Product Increment: Each sprint results in a potentially releasable/shippable product (called an
increment).

 Product Backlog: The product owner manages a prioritized list of planned product items
(called the product backlog). The product backlog evolves from sprint to sprint (called backlog
refinement).

 Sprint Backlog: At the start of each sprint, the Scrum team selects a set of highest priority
items (called the sprint backlog) from the product backlog. Since the Scrum team, not the
product owner, selects the items to be realized within the sprint, the selection is referred to as
being on the pull principle rather than the push principle.

 Definition of Done: To make sure that there is a potentially releasable product at each sprint’s
end, the Scrum team discusses and defines appropriate criteria for sprint completion. The
discussion deepens the team’s understanding of the backlog items and the product
requirements.

 Timeboxing: Only those tasks, requirements, or features that the team expects to finish within
the sprint are part of the sprint backlog. If the development team cannot finish a task within a
sprint, the associated product features are removed from the sprint and the task is moved
back into the product backlog. Timeboxing applies not only to tasks, but in other situations
(e.g., enforcing meeting start and end times).

 Transparency: The development team reports and updates sprint status on a daily basis at a
meeting called the daily scrum. This makes the content and progress of the current sprint,
including test results, visible to the team, management, and all interested parties. For
example, the development team can show sprint status on a whiteboard.

Scrum defines three roles:

 Scrum Master: ensures that Scrum practices and rules are implemented and followed, and
resolves any violations, resource issues, or other impediments that could prevent the team
from following the practices and rules. This person is not the team lead, but a coach.

 Product Owner: represents the customer, and generates, maintains, and prioritizes the
product backlog. This person is not the team lead.

 Development Team: develop and test the product. The team is self-organized: There is no
team lead, so the team makes the decisions. The team is also cross-functional (see Section
2.3.2 and Section 3.1.4).

Scrum (as opposed to XP) does not dictate specific software development techniques (e.g., test first
programming). In addition, Scrum does not provide guidance on how testing has to be done in a
Scrum project.

Kanban
Kanban [Anderson13] is a management approach that is sometimes used in Agile projects. The
general objective is to visualize and optimize the flow of work within a value-added chain. Kanban
utilizes three instruments [Linz14]:

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 13 of 43 31 May 2014

© International Software Testing Qualifications Board

 Kanban Board: The value chain to be managed is visualized by a Kanban board. Each column
shows a station, which is a set of related activities, e.g., development or testing. The items to
be produced or tasks to be processed are symbolized by tickets moving from left to right
across the board through the stations.

 Work-in-Progress Limit: The amount of parallel active tasks is strictly limited. This is controlled
by the maximum number of tickets allowed for a station and/or globally for the board.
Whenever a station has free capacity, the worker pulls a ticket from the predecessor station.

 Lead Time: Kanban is used to optimize the continuous flow of tasks by minimizing the
(average) lead time for the complete value stream.

Kanban features some similarities to Scrum. In both frameworks, visualizing the active tasks (e.g., on
a public whiteboard) provides transparency of content and progress of tasks. Tasks not yet scheduled
are waiting in a backlog and moved onto the Kanban board as soon as there is new space (production
capacity) available.

Iterations or sprints are optional in Kanban. The Kanban process allows releasing its deliverables item
by item, rather than as part of a release. Timeboxing as a synchronizing mechanism, therefore, is
optional, unlike in Scrum, which synchronizes all tasks within a sprint.

1.2.2 Collaborative User Story Creation

Poor specifications are often a major reason for project failure. Specification problems can result from
the users’ lack of insight into their true needs, absence of a global vision for the system, redundant or
contradictory features, and other miscommunications. In Agile development, user stories are written to
capture requirements from the perspectives of developers, testers, and business representatives. In
sequential development, this shared vision of a feature is accomplished through formal reviews after
requirements are written; in Agile development, this shared vision is accomplished through frequent
informal reviews while the requirements are being written.

The user stories must address both functional and non-functional characteristics. Each story includes
acceptance criteria for these characteristics. These criteria should be defined in collaboration between
business representatives, developers, and testers. They provide developers and testers with an
extended vision of the feature that business representatives will validate. An Agile team considers a
task finished when a set of acceptance criteria have been satisfied.

Typically, the tester’s unique perspective will improve the user story by identifying missing details or
non-functional requirements. A tester can contribute by asking business representatives open-ended
questions about the user story, proposing ways to test the user story, and confirming the acceptance
criteria.

The collaborative authorship of the user story can use techniques such as brainstorming and mind
mapping. The tester may use the INVEST technique [INVEST]:

 Independent

 Negotiable

 Valuable

 Estimable

 Small

 Testable

According to the 3C concept [Jeffries00], a user story is the conjunction of three elements:

 Card: The card is the physical media describing a user story. It identifies the requirement, its
criticality, expected development and test duration, and the acceptance criteria for that story.
The description has to be accurate, as it will be used in the product backlog.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 14 of 43 31 May 2014

© International Software Testing Qualifications Board

 Conversation: The conversation explains how the software will be used. The conversation can
be documented or verbal. Testers, having a different point of view than developers and
business representatives [ISTQB_FL_SYL], bring valuable input to the exchange of thoughts,
opinions, and experiences. Conversation begins during the release-planning phase and
continues when the story is scheduled.

 Confirmation: The acceptance criteria, discussed in the conversation, are used to confirm that
the story is done. These acceptance criteria may span multiple user stories. Both positive and
negative tests should be used to cover the criteria. During confirmation, various participants
play the role of a tester. These can include developers as well as specialists focused on
performance, security, interoperability, and other quality characteristics. To confirm a story as
done, the defined acceptance criteria should be tested and shown to be satisfied.

Agile teams vary in terms of how they document user stories. Regardless of the approach taken to
document user stories, documentation should be concise, sufficient, and necessary.

1.2.3 Retrospectives

In Agile development, a retrospective is a meeting held at the end of each iteration to discuss what
was successful, what could be improved, and how to incorporate the improvements and retain the
successes in future iterations. Retrospectives cover topics such as the process, people, organizations,
relationships, and tools. Regularly conducted retrospective meetings, when appropriate follow up
activities occur, are critical to self-organization and continual improvement of development and testing.

Retrospectives can result in test-related improvement decisions focused on test effectiveness, test
productivity, test case quality, and team satisfaction. They may also address the testability of the
applications, user stories, features, or system interfaces. Root cause analysis of defects can drive
testing and development improvements. In general, teams should implement only a few improvements
per iteration. This allows for continuous improvement at a sustained pace.

The timing and organization of the retrospective depends on the particular Agile method followed.
Business representatives and the team attend each retrospective as participants while the facilitator
organizes and runs the meeting. In some cases, the teams may invite other participants to the
meeting.

Testers should play an important role in the retrospectives. Testers are part of the team and bring
their unique perspective [ISTQB_FL_SYL], Section 1.5. Testing occurs in each sprint and vitally
contributes to success. All team members, testers and non-testers, can provide input on both testing
and non-testing activities.

Retrospectives must occur within a professional environment characterized by mutual trust. The
attributes of a successful retrospective are the same as those for any other review as is discussed in
the Foundation Level syllabus [ISTQB_FL_SYL], Section 3.2.

1.2.4 Continuous Integration

Delivery of a product increment requires reliable, working, integrated software at the end of every
sprint. Continuous integration addresses this challenge by merging all changes made to the software
and integrating all changed components regularly, at least once a day. Configuration management,
compilation, software build, deployment, and testing are wrapped into a single, automated, repeatable
process. Since developers integrate their work constantly, build constantly, and test constantly,
defects in code are detected more quickly.

Following the developers’ coding, debugging, and check-in of code into a shared source code
repository, a continuous integration process consists of the following automated activities:

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 15 of 43 31 May 2014

© International Software Testing Qualifications Board

 Static code analysis: executing static code analysis and reporting results

 Compile: compiling and linking the code, generating the executable files

 Unit test: executing the unit tests, checking code coverage and reporting test results

 Deploy: installing the build into a test environment

 Integration test: executing the integration tests and reporting results

 Report (dashboard): posting the status of all these activities to a publicly visible location or e-
mailing status to the team

An automated build and test process takes place on a daily basis and detects integration errors early
and quickly. Continuous integration allows Agile testers to run automated tests regularly, in some
cases as part of the continuous integration process itself, and send quick feedback to the team on the
quality of the code. These test results are visible to all team members, especially when automated
reports are integrated into the process. Automated regression testing can be continuous throughout
the iteration. Good automated regression tests cover as much functionality as possible, including user
stories delivered in the previous iterations. Good coverage in the automated regression tests helps
support building (and testing) large integrated systems. When the regression testing is automated, the
Agile testers are freed to concentrate their manual testing on new features, implemented changes,
and confirmation testing of defect fixes.

In addition to automated tests, organizations using continuous integration typically use build tools to
implement continuous quality control. In addition to running unit and integration tests, such tools can
run additional static and dynamic tests, measure and profile performance, extract and format
documentation from the source code, and facilitate manual quality assurance processes. This
continuous application of quality control aims to improve the quality of the product as well as reduce
the time taken to deliver it by replacing the traditional practice of applying quality control after
completing all development.

Build tools can be linked to automatic deployment tools, which can fetch the appropriate build from the
continuous integration or build server and deploy it into one or more development, test, staging, or
even production environments. This reduces the errors and delays associated with relying on
specialized staff or programmers to install releases in these environments.

Continuous integration can provide the following benefits:

 Allows earlier detection and easier root cause analysis of integration problems and conflicting
changes

 Gives the development team regular feedback on whether the code is working

 Keeps the version of the software being tested within a day of the version being developed

 Reduces regression risk associated with developer code refactoring due to rapid re-testing of
the code base after each small set of changes

 Provides confidence that each day’s development work is based on a solid foundation

 Makes progress toward the completion of the product increment visible, encouraging
developers and testers

 Eliminates the schedule risks associated with big-bang integration

 Provides constant availability of executable software throughout the sprint for testing,
demonstration, or education purposes

 Reduces repetitive manual testing activities

 Provides quick feedback on decisions made to improve quality and tests

However, continuous integration is not without its risks and challenges:

 Continuous integration tools have to be introduced and maintained

 The continuous integration process must be defined and established

 Test automation requires additional resources and can be complex to establish

 Thorough test coverage is essential to achieve automated testing advantages

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 16 of 43 31 May 2014

© International Software Testing Qualifications Board

 Teams sometimes over-rely on unit tests and perform too little system and acceptance testing

Continuous integration requires the use of tools, including tools for testing, tools for automating the
build process, and tools for version control.

1.2.5 Release and Iteration Planning

As mentioned in the Foundation Level syllabus [ISTQB_FL_SYL], planning is an on-going activity, and
this is the case in Agile lifecycles as well. For Agile lifecycles, two kinds of planning occur, release
planning and iteration planning.

Release planning looks ahead to the release of a product, often a few months ahead of the start of a
project. Release planning defines and re-defines the product backlog, and may involve refining larger
user stories into a collection of smaller stories. Release planning provides the basis for a test
approach and test plan spanning all iterations. Release plans are high-level.

In release planning, business representatives establish and prioritize the user stories for the release,
in collaboration with the team (see Section 1.2.2). Based on these user stories, project and quality
risks are identified and a high-level effort estimation is performed (see Section 3.2).

Testers are involved in release planning and especially add value in the following activities:

 Defining testable user stories, including acceptance criteria

 Participating in project and quality risk analyses

 Estimating testing effort associated with the user stories

 Defining the necessary test levels

 Planning the testing for the release

After release planning is done, iteration planning for the first iteration starts. Iteration planning looks
ahead to the end of a single iteration and is concerned with the iteration backlog.

In iteration planning, the team selects user stories from the prioritized release backlog, elaborates the
user stories, performs a risk analysis for the user stories, and estimates the work needed for each user
story. If a user story is too vague and attempts to clarify it have failed, the team can refuse to accept it
and use the next user story based on priority. The business representatives must answer the team’s
questions about each story so the team can understand what they should implement and how to test
each story.

The number of stories selected is based on established team velocity and the estimated size of the
selected user stories. After the contents of the iteration are finalized, the user stories are broken into
tasks, which will be carried out by the appropriate team members.

Testers are involved in iteration planning and especially add value in the following activities:

 Participating in the detailed risk analysis of user stories

 Determining the testability of the user stories

 Creating acceptance tests for the user stories

 Breaking down user stories into tasks (particularly testing tasks)

 Estimating testing effort for all testing tasks

 Identifying functional and non-functional aspects of the system to be tested

 Supporting and participating in test automation at multiple levels of testing

Release plans may change as the project proceeds, including changes to individual user stories in the
product backlog. These changes may be triggered by internal or external factors. Internal factors
include delivery capabilities, velocity, and technical issues. External factors include the discovery of

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 17 of 43 31 May 2014

© International Software Testing Qualifications Board

new markets and opportunities, new competitors, or business threats that may change release
objectives and/or target dates. In addition, iteration plans may change during an iteration. For
example, a particular user story that was considered relatively simple during estimation might prove
more complex than expected.

These changes can be challenging for testers. Testers must understand the big picture of the release
for test planning purposes, and they must have an adequate test basis and test oracle in each iteration
for test development purposes as discussed in the Foundation Level syllabus [ISTQB_FL_SYL],
Section 1.4. The required information must be available to the tester early, and yet change must be
embraced according to Agile principles. This dilemma requires careful decisions about test strategies
and test documentation. For more on Agile testing challenges, see [Black09], Chapter 12.

Release and iteration planning should address test planning as well as planning for development
activities. Particular test-related issues to address include:

 The scope of testing, the extent of testing for those areas in scope, the test goals, and the
reasons for these decisions.

 The team members who will carry out the test activities.

 The test environment and test data needed, when they are needed, and whether any additions
or changes to the test environment and/or data will occur prior to or during the project.

 The timing, sequencing, dependencies, and prerequisites for the functional and non-functional
test activities (e.g., how frequently to run regression tests, which features depend on other
features or test data, etc.), including how the test activities relate to and depend on
development activities.

 The project and quality risks to be addressed (see Section 3.2.1).

In addition, the larger team estimation effort should include consideration of the time and effort needed
to complete the required testing activities.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 18 of 43 31 May 2014

© International Software Testing Qualifications Board

2. Fundamental Agile Testing Principles, Practices, and
Processes – 105 mins.

Keywords
build verification test, configuration item, configuration management

Learning Objectives for Fundamental Agile Testing Principles, Practices, and
Processes

2.1 The Differences between Testing in Traditional and Agile Approaches

FA-2.1.1 (K2) Describe the differences between testing activities in Agile projects and non-Agile
projects

FA-2.1.2 (K2) Describe how development and testing activities are integrated in Agile projects
FA-2.1.3 (K2) Describe the role of independent testing in Agile projects

2.2 Status of Testing in Agile Projects

FA-2.2.1 (K2) Describe the tools and techniques used to communicate the status of testing in
an Agile project, including test progress and product quality

FA-2.2.2 (K2) Describe the process of evolving tests across multiple iterations and explain why
test automation is important to manage regression risk in Agile projects

2.3 Role and Skills of a Tester in an Agile Team

FA-2.3.1 (K2) Understand the skills (people, domain, and testing) of a tester in an Agile team
FA-2.3.2 (K2) Understand the role of a tester within an Agile team

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 19 of 43 31 May 2014

© International Software Testing Qualifications Board

2.1 The Differences between Testing in Traditional and Agile
Approaches

As described in the Foundation Level syllabus [ISTQB_FL_SYL] and in [Black09], test activities are
related to development activities, and thus testing varies in different lifecycles. Testers must
understand the differences between testing in traditional lifecycle models (e.g., sequential such as the
V-model or iterative such as RUP) and Agile lifecycles in order to work effectively and efficiently. The
Agile models differ in terms of the way testing and development activities are integrated, the project
work products, the names, entry and exit criteria used for various levels of testing, the use of tools,
and how independent testing can be effectively utilized.

Testers should remember that organizations vary considerably in their implementation of lifecycles.
Deviation from the ideals of Agile lifecycles (see Section 1.1) may represent intelligent customization
and adaptation of the practices. The ability to adapt to the context of a given project, including the
software development practices actually followed, is a key success factor for testers.

2.1.1 Testing and Development Activities

One of the main differences between traditional lifecycles and Agile lifecycles is the idea of very short
iterations, each iteration resulting in working software that delivers features of value to business
stakeholders. At the beginning of the project, there is a release planning period. This is followed by a
sequence of iterations. At the beginning of each iteration, there is an iteration planning period. Once
iteration scope is established, the selected user stories are developed, integrated with the system, and
tested. These iterations are highly dynamic, with development, integration, and testing activities taking
place throughout each iteration, and with considerable parallelism and overlap. Testing activities occur
throughout the iteration, not as a final activity.

Testers, developers, and business stakeholders all have a role in testing, as with traditional lifecycles.
Developers perform unit tests as they develop features from the user stories. Testers then test those
features. Business stakeholders also test the stories during implementation. Business stakeholders
might use written test cases, but they also might simply experiment with and use the feature in order
to provide fast feedback to the development team.

In some cases, hardening or stabilization iterations occur periodically to resolve any lingering defects
and other forms of technical debt. However, the best practice is that no feature is considered done
until it has been integrated and tested with the system [Goucher09]. Another good practice is to
address defects remaining from the previous iteration at the beginning of the next iteration, as part of
the backlog for that iteration (referred to as “fix bugs first”). However, some complain that this practice
results in a situation where the total work to be done in the iteration is unknown and it will be more
difficult to estimate when the remaining features can be done. At the end of the sequence of iterations,
there can be a set of release activities to get the software ready for delivery, though in some cases
delivery occurs at the end of each iteration.

When risk-based testing is used as one of the test strategies, a high-level risk analysis occurs during
release planning, with testers often driving that analysis. However, the specific quality risks
associated with each iteration are identified and assessed in iteration planning. This risk analysis can
influence the sequence of development as well as the priority and depth of testing for the features. It
also influences the estimation of the test effort required for each feature (see Section 3.2).

In some Agile practices (e.g., Extreme Programming), pairing is used. Pairing can involve testers
working together in twos to test a feature. Pairing can also involve a tester working collaboratively
with a developer to develop and test a feature. Pairing can be difficult when the test team is
distributed, but processes and tools can help enable distributed pairing. For more information on
distributed work, see [ISTQB_ALTM_SYL], Section 2.8.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 20 of 43 31 May 2014

© International Software Testing Qualifications Board

Testers may also serve as testing and quality coaches within the team, sharing testing knowledge and
supporting quality assurance work within the team. This promotes a sense of collective ownership of
quality of the product.

Test automation at all levels of testing occurs in many Agile teams, and this can mean that testers
spend time creating, executing, monitoring, and maintaining automated tests and results. Because of
the heavy use of test automation, a higher percentage of the manual testing on Agile projects tends to
be done using experience-based and defect-based techniques such as software attacks, exploratory
testing, and error guessing (see [ISTQB_ALTA_SYL], Sections 3.3 and 3.4 and [ISTQB_FL_SYL],
Section 4.5). While developers will focus on creating unit tests, testers should focus on creating
automated integration, system, and system integration tests. This leads to a tendency for Agile teams
to favor testers with a strong technical and test automation background.

One core Agile principle is that change may occur throughout the project. Therefore, lightweight work
product documentation is favored in Agile projects. Changes to existing features have testing
implications, especially regression testing implications. The use of automated testing is one way of
managing the amount of test effort associated with change. However, it’s important that the rate of
change not exceed the project team’s ability to deal with the risks associated with those changes.

2.1.2 Project Work Products

Project work products of immediate interest to Agile testers typically fall into three categories:
1. Business-oriented work products that describe what is needed (e.g., requirements

specifications) and how to use it (e.g., user documentation)
2. Development work products that describe how the system is built (e.g., database entity-

relationship diagrams), that actually implement the system (e.g., code), or that evaluate
individual pieces of code (e.g., automated unit tests)

3. Test work products that describe how the system is tested (e.g., test strategies and plans),
that actually test the system (e.g., manual and automated tests), or that present test results
(e.g., test dashboards as discussed in Section 2.2.1)

In a typical Agile project, it is a common practice to avoid producing vast amounts of documentation.
Instead, focus is more on having working software, together with automated tests that demonstrate
conformance to requirements. This encouragement to reduce documentation applies only to
documentation that does not deliver value to the customer. In a successful Agile project, a balance is
struck between increasing efficiency by reducing documentation and providing sufficient
documentation to support business, testing, development, and maintenance activities. The team must
make a decision during release planning about which work products are required and what level of
work product documentation is needed.

Typical business-oriented work products on Agile projects include user stories and acceptance criteria.
User stories are the Agile form of requirements specifications, and should explain how the system
should behave with respect to a single, coherent feature or function. A user story should define a
feature small enough to be completed in a single iteration. Larger collections of related features, or a
collection of sub-features that make up a single complex feature, may be referred to as “epics”. Epics
may include user stories for different development teams. For example, one user story can describe
what is required at the API-level (middleware) while another story describes what is needed at the UI-
level (application). These collections may be developed over a series of sprints. Each epic and its
user stories should have associated acceptance criteria.

Typical developer work products on Agile projects include code. Agile developers also often create
automated unit tests. These tests might be created after the development of code. In some cases,
though, developers create tests incrementally, before each portion of the code is written, in order to
provide a way of verifying, once that portion of code is written, whether it works as expected. While

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 21 of 43 31 May 2014

© International Software Testing Qualifications Board

this approach is referred to as test first or test-driven development, in reality the tests are more a form
of executable low-level design specifications rather than tests [Beck02].

Typical tester work products on Agile projects include automated tests, as well as documents such as
test plans, quality risk catalogs, manual tests, defect reports, and test results logs. The documents are
captured in as lightweight a fashion as possible, which is often also true of these documents in
traditional lifecycles. Testers will also produce test metrics from defect reports and test results logs,
and again there is an emphasis on a lightweight approach.

In some Agile implementations, especially regulated, safety critical, distributed, or highly complex
projects and products, further formalization of these work products is required. For example, some
teams transform user stories and acceptance criteria into more formal requirements specifications.
Vertical and horizontal traceability reports may be prepared to satisfy auditors, regulations, and other
requirements.

2.1.3 Test Levels

Test levels are test activities that are logically related, often by the maturity or completeness of the
item under test.

In sequential lifecycle models, the test levels are often defined such that the exit criteria of one level
are part of the entry criteria for the next level. In some iterative models, this rule does not apply. Test
levels overlap. Requirement specification, design specification, and development activities may
overlap with test levels.

In some Agile lifecycles, overlap occurs because changes to requirements, design, and code can
happen at any point in an iteration. While Scrum, in theory, does not allow changes to the user stories
after iteration planning, in practice such changes sometimes occur. During an iteration, any given
user story will typically progress sequentially through the following test activities:

 Unit testing, typically done by the developer

 Feature acceptance testing, which is sometimes broken into two activities:

 Feature verification testing, which is often automated, may be done by developers or
testers, and involves testing against the user story’s acceptance criteria

 Feature validation testing, which is usually manual and can involve developers,
testers, and business stakeholders working collaboratively to determine whether the
feature is fit for use, to improve visibility of the progress made, and to receive real
feedback from the business stakeholders

In addition, there is often a parallel process of regression testing occurring throughout the iteration.
This involves re-running the automated unit tests and feature verification tests from the current
iteration and previous iterations, usually via a continuous integration framework.

In some Agile projects, there may be a system test level, which starts once the first user story is ready
for such testing. This can involve executing functional tests, as well as non-functional tests for
performance, reliability, usability, and other relevant test types.

Agile teams can employ various forms of acceptance testing (using the term as explained in the
Foundation Level syllabus [ISTQB_FL_SYL]). Internal alpha tests and external beta tests may occur,
either at the close of each iteration, after the completion of each iteration, or after a series of iterations.
User acceptance tests, operational acceptance tests, regulatory acceptance tests, and contract
acceptance tests also may occur, either at the close of each iteration, after the completion of each
iteration, or after a series of iterations.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 22 of 43 31 May 2014

© International Software Testing Qualifications Board

2.1.4 Testing and Configuration Management

Agile projects often involve heavy use of automated tools to develop, test, and manage software
development. Developers use tools for static analysis, unit testing, and code coverage. Developers
continuously check the code and unit tests into a configuration management system, using automated
build and test frameworks. These frameworks allow the continuous integration of new software with
the system, with the static analysis and unit tests run repeatedly as new software is checked in
[Kubaczkowski].

These automated tests can also include functional tests at the integration and system levels. Such
functional automated tests may be created using functional testing harnesses, open-source user
interface functional test tools, or commercial tools, and can be integrated with the automated tests run
as part of the continuous integration framework. In some cases, due to the duration of the functional
tests, the functional tests are separated from the unit tests and run less frequently. For example, unit
tests may be run each time new software is checked in, while the longer functional tests are run only
every few days.

One goal of the automated tests is to confirm that the build is functioning and installable. If any
automated test fails, the team should fix the underlying defect in time for the next code check-in. This
requires an investment in real-time test reporting to provide good visibility into test results. This
approach helps reduce expensive and inefficient cycles of “build-install-fail-rebuild-reinstall” that can
occur in many traditional projects, since changes that break the build or cause software to fail to install
are detected quickly.

Automated testing and build tools help to manage the regression risk associated with the frequent
change that often occurs in Agile projects. However, over-reliance on automated unit testing alone to
manage these risks can be a problem, as unit testing often has limited defect detection effectiveness
[Jones11]. Automated tests at the integration and system levels are also required.

2.1.5 Organizational Options for Independent Testing

As discussed in the Foundation Level syllabus [ISTQB_FL_SYL], independent testers are often more
effective at finding defects. In some Agile teams, developers create many of the tests in the form of
automated tests. One or more testers may be embedded within the team, performing many of the
testing tasks. However, given those testers’ position within the team, there is a risk of loss of
independence and objective evaluation.

Other Agile teams retain fully independent, separate test teams, and assign testers on-demand during
the final days of each sprint. This can preserve independence, and these testers can provide an
objective, unbiased evaluation of the software. However, time pressures, lack of understanding of the
new features in the product, and relationship issues with business stakeholders and developers often
lead to problems with this approach.

A third option is to have an independent, separate test team where testers are assigned to Agile
teams on a long-term basis, at the beginning of the project, allowing them to maintain their
independence while gaining a good understanding of the product and strong relationships with other
team members. In addition, the independent test team can have specialized testers outside of the
Agile teams to work on long-term and/or iteration-independent activities, such as developing
automated test tools, carrying out non-functional testing, creating and supporting test environments
and data, and carrying out test levels that might not fit well within a sprint (e.g., system integration
testing).

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 23 of 43 31 May 2014

© International Software Testing Qualifications Board

2.2 Status of Testing in Agile Projects

Change takes place rapidly in Agile projects. This change means that test status, test progress, and
product quality constantly evolve, and testers must devise ways to get that information to the team so
that they can make decisions to stay on track for successful completion of each iteration. In addition,
change can affect existing features from previous iterations. Therefore, manual and automated tests
must be updated to deal effectively with regression risk.

2.2.1 Communicating Test Status, Progress, and Product Quality

Agile teams progress by having working software at the end of each iteration. To determine when the
team will have working software, they need to monitor the progress of all work items in the iteration
and release. Testers in Agile teams utilize various methods to record test progress and status,
including test automation results, progression of test tasks and stories on the Agile task board, and
burndown charts showing the team’s progress. These can then be communicated to the rest of the
team using media such as wiki dashboards and dashboard-style emails, as well as verbally during
stand-up meetings. Agile teams may use tools that automatically generate status reports based on
test results and task progress, which in turn update wiki-style dashboards and emails. This method of
communication also gathers metrics from the testing process, which can be used in process
improvement. Communicating test status in such an automated manner also frees testers’ time to
focus on designing and executing more test cases.

Teams may use burndown charts to track progress across the entire release and within each iteration.
A burndown chart [Crispin08] represents the amount of work left to be done against time allocated to
the release or iteration.

To provide an instant, detailed visual representation of the whole team’s current status, including the
status of testing, teams may use Agile task boards. The story cards, development tasks, test tasks,
and other tasks created during iteration planning (see Section 1.2.5) are captured on the task board,
often using color-coordinated cards to determine the task type. During the iteration, progress is
managed via the movement of these tasks across the task board into columns such as to do, work in
progress, verify, and done. Agile teams may use tools to maintain their story cards and Agile task
boards, which can automate dashboards and status updates.

Testing tasks on the task board relate to the acceptance criteria defined for the user stories. As test
automation scripts, manual tests, and exploratory tests for a test task achieve a passing status, the
task moves into the done column of the task board. The whole team reviews the status of the task
board regularly, often during the daily stand-up meetings, to ensure tasks are moving across the board
at an acceptable rate. If any tasks (including testing tasks) are not moving or are moving too slowly,
the team reviews and addresses any issues that may be blocking the progress of those tasks.

The daily stand-up meeting includes all members of the Agile team including testers. At this meeting,
they communicate their current status. The agenda for each member is [Agile Alliance Guide]:

 What have you completed since the last meeting?

 What do you plan to complete by the next meeting?

 What is getting in your way?
Any issues that may block test progress are communicated during the daily stand-up meetings, so the
whole team is aware of the issues and can resolve them accordingly.

To improve the overall product quality, many Agile teams perform customer satisfaction surveys to
receive feedback on whether the product meets customer expectations. Teams may use other metrics
similar to those captured in traditional development methodologies, such as test pass/fail rates, defect
discovery rates, confirmation and regression test results, defect density, defects found and fixed,
requirements coverage, risk coverage, code coverage, and code churn to improve the product quality.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 24 of 43 31 May 2014

© International Software Testing Qualifications Board

As with any lifecycle, the metrics captured and reported should be relevant and aid decision-making.
Metrics should not be used to reward, punish, or isolate any team members.

2.2.2 Managing Regression Risk with Evolving Manual and Automated Test Cases

In an Agile project, as each iteration completes, the product grows. Therefore, the scope of testing
also increases. Along with testing the code changes made in the current iteration, testers also need to
verify no regression has been introduced on features that were developed and tested in previous
iterations. The risk of introducing regression in Agile development is high due to extensive code churn
(lines of code added, modified, or deleted from one version to another). Since responding to change
is a key Agile principle, changes can also be made to previously delivered features to meet business
needs. In order to maintain velocity without incurring a large amount of technical debt, it is critical that
teams invest in test automation at all test levels as early as possible. It is also critical that all test
assets such as automated tests, manual test cases, test data, and other testing artifacts are kept up-
to-date with each iteration. It is highly recommended that all test assets be maintained in a
configuration management tool in order to enable version control, to ensure ease of access by all
team members, and to support making changes as required due to changing functionality while still
preserving the historic information of the test assets.

Because complete repetition of all tests is seldom possible, especially in tight-timeline Agile projects,
testers need to allocate time in each iteration to review manual and automated test cases from
previous and current iterations to select test cases that may be candidates for the regression test
suite, and to retire test cases that are no longer relevant. Tests written in earlier iterations to verify
specific features may have little value in later iterations due to feature changes or new features which
alter the way those earlier features behave.

While reviewing test cases, testers should consider suitability for automation. The team needs to
automate as many tests as possible from previous and current iterations. This allows automated
regression tests to reduce regression risk with less effort than manual regression testing would
require. This reduced regression test effort frees the testers to more thoroughly test new features and
functions in the current iteration.

It is critical that testers have the ability to quickly identify and update test cases from previous
iterations and/or releases that are affected by the changes made in the current iteration. Defining how
the team designs, writes, and stores test cases should occur during release planning. Good practices
for test design and implementation need to be adopted early and applied consistently. The shorter
timeframes for testing and the constant change in each iteration will increase the impact of poor test
design and implementation practices.

Use of test automation, at all test levels, allows Agile teams to provide rapid feedback on product
quality. Well-written automated tests provide a living document of system functionality [Crispin08]. By
checking the automated tests and their corresponding test results into the configuration management
system, aligned with the versioning of the product builds, Agile teams can review the functionality
tested and the test results for any given build at any given point in time.

Automated unit tests are run before source code is checked into the mainline of the configuration
management system to ensure the code changes do not break the software build. To reduce build
breaks, which can slow down the progress of the whole team, code should not be checked in unless
all automated unit tests pass. Automated unit test results provide immediate feedback on code and
build quality, but not on product quality.

Automated acceptance tests are run regularly as part of the continuous integration full system build.
These tests are run against a complete system build at least daily, but are generally not run with each
code check-in as they take longer to run than automated unit tests and could slow down code check-

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 25 of 43 31 May 2014

© International Software Testing Qualifications Board

ins. The test results from automated acceptance tests provide feedback on product quality with
respect to regression since the last build, but they do not provide status of overall product quality.

Automated tests can be run continuously against the system. An initial subset of automated tests to
cover critical system functionality and integration points should be created immediately after a new
build is deployed into the test environment. These tests are commonly known as build verification
tests. Results from the build verification tests will provide instant feedback on the software after
deployment, so teams don’t waste time testing an unstable build.

Automated tests contained in the regression test set are generally run as part of the daily main build in
the continuous integration environment, and again when a new build is deployed into the test
environment. As soon as an automated regression test fails, the team stops and investigates the
reasons for the failing test. The test may have failed due to legitimate functional changes in the
current iteration, in which case the test and/or user story may need to be updated to reflect the new
acceptance criteria. Alternatively, the test may need to be retired if another test has been built to
cover the changes. However, if the test failed due to a defect, it is a good practice for the team to fix
the defect prior to progressing with new features.

In addition to test automation, the following testing tasks may also be automated:

 Test data generation

 Loading test data into systems

 Deployment of builds into the test environments

 Restoration of a test environment (e.g., the database or website data files) to a baseline

 Comparison of data outputs
Automation of these tasks reduces the overhead and allows the team to spend time developing and
testing new features.

2.3 Role and Skills of a Tester in an Agile Team

In an Agile team, testers must closely collaborate with all other team members and with business
stakeholders. This has a number of implications in terms of the skills a tester must have and the
activities they perform within an Agile team.

2.3.1 Agile Tester Skills

Agile testers should have all the skills mentioned in the Foundation Level syllabus [ISTQB_FL_SYL].
In addition to these skills, a tester in an Agile team should be competent in test automation, test-driven
development, acceptance test-driven development, white-box, black-box, and experience-based
testing.

As Agile methodologies depend heavily on collaboration, communication, and interaction between the
team members as well as stakeholders outside the team, testers in an Agile team should have good
interpersonal skills. Testers in Agile teams should:

 Be positive and solution-oriented with team members and stakeholders

 Display critical, quality-oriented, skeptical thinking about the product

 Actively acquire information from stakeholders (rather than relying entirely on written
specifications)

 Accurately evaluate and report test results, test progress, and product quality

 Work effectively to define testable user stories, especially acceptance criteria, with customer
representatives and stakeholders

 Collaborate within the team, working in pairs with programmers and other team members

 Respond to change quickly, including changing, adding, or improving test cases

 Plan and organize their own work

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 26 of 43 31 May 2014

© International Software Testing Qualifications Board

Continuous skills growth, including interpersonal skills growth, is essential for all testers, including
those on Agile teams.

2.3.2 The Role of a Tester in an Agile Team

The role of a tester in an Agile team includes activities that generate and provide feedback not only on
test status, test progress, and product quality, but also on process quality. In addition to the activities
described elsewhere in this syllabus, these activities include:

 Understanding, implementing, and updating the test strategy

 Measuring and reporting test coverage across all applicable coverage dimensions

 Ensuring proper use of testing tools

 Configuring, using, and managing test environments and test data

 Reporting defects and working with the team to resolve them

 Coaching other team members in relevant aspects of testing

 Ensuring the appropriate testing tasks are scheduled during release and iteration planning

 Actively collaborating with developers and business stakeholders to clarify requirements,
especially in terms of testability, consistency, and completeness

 Participating proactively in team retrospectives, suggesting and implementing improvements

Within an Agile team, each team member is responsible for product quality and plays a role in
performing test-related tasks.

Agile organizations may encounter some test-related organizational risks:

 Testers work so closely to developers that they lose the appropriate tester mindset

 Testers become tolerant of or silent about inefficient, ineffective, or low-quality practices within
the team

 Testers cannot keep pace with the incoming changes in time-constrained iterations
To mitigate these risks, organizations may consider variations for preserving independence discussed
in Section 2.1.5.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 27 of 43 31 May 2014

© International Software Testing Qualifications Board

3. Agile Testing Methods, Techniques, and Tools – 480
mins.

Keywords
acceptance criteria, exploratory testing, performance testing, product risk, quality risk, regression
testing, test approach, test charter, test estimation, test execution automation, test strategy, test-driven
development, unit test framework

Learning Objectives for Agile Testing Methods, Techniques, and Tools

3.1 Agile Testing Methods

FA-3.1.1 (K1) Recall the concepts of test-driven development, acceptance test-driven
development, and behavior-driven development

FA-3.1.2 (K1) Recall the concepts of the test pyramid
FA-3.1.3 (K2) Summarize the testing quadrants and their relationships with testing levels and

testing types
FA-3.1.4 (K3) For a given Agile project, practice the role of a tester in a Scrum team

3.2 Assessing Quality Risks and Estimating Test Effort

FA-3.2.1 (K3) Assess quality risks within an Agile project
FA-3.2.2 (K3) Estimate testing effort based on iteration content and quality risks

3.3 Techniques in Agile Projects

FA-3.3.1 (K3) Interpret relevant information to support testing activities
FA-3.3.2 (K2) Explain to business stakeholders how to define testable acceptance criteria
FA-3.3.3 (K3) Given a user story, write acceptance test-driven development test cases
FA-3.3.4 (K3) For both functional and non-functional behavior, write test cases using black box

test design techniques based on given user stories
FA-3.3.5 (K3) Perform exploratory testing to support the testing of an Agile project

3.4 Tools in Agile Projects

FA-3.4.1 (K1) Recall different tools available to testers according to their purpose and to
activities in Agile projects

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 28 of 43 31 May 2014

© International Software Testing Qualifications Board

3.1 Agile Testing Methods

There are certain testing practices that can be followed in every development project (agile or not) to
produce quality products. These include writing tests in advance to express proper behavior, focusing
on early defect prevention, detection, and removal, and ensuring that the right test types are run at the
right time and as part of the right test level. Agile practitioners aim to introduce these practices early.
Testers in Agile projects play a key role in guiding the use of these testing practices throughout the
lifecycle.

3.1.1 Test-Driven Development, Acceptance Test-Driven Development, and
Behavior-Driven Development

Test-driven development, acceptance test-driven development, and behavior-driven development are
three complementary techniques in use among Agile teams to carry out testing across the various test
levels. Each technique is an example of a fundamental principle of testing, the benefit of early testing
and QA activities, since the tests are defined before the code is written.

Test-Driven Development
Test-driven development (TDD) is used to develop code guided by automated test cases. The process
for test-driven development is:

 Add a test that captures the programmer’s concept of the desired functioning of a small piece
of code

 Run the test, which should fail since the code doesn’t exist

 Write the code and run the test in a tight loop until the test passes

 Refactor the code after the test is passed, re-running the test to ensure it continues to pass
against the refactored code

 Repeat this process for the next small piece of code, running the previous tests as well as the
added tests

The tests written are primarily unit level and are code-focused, though tests may also be written at the
integration or system levels. Test-driven development gained its popularity through Extreme
Programming [Beck02], but is also used in other Agile methodologies and sometimes in sequential
lifecycles. It helps developers focus on clearly-defined expected results. The tests are automated and
are used in continuous integration.

Acceptance Test-Driven Development
Acceptance test-driven development [Adzic09] defines acceptance criteria and tests during the
creation of user stories (see Section 1.2.2). Acceptance test-driven development is a collaborative
approach that allows every stakeholder to understand how the software component has to behave and
what the developers, testers, and business representatives need to ensure this behavior. The process
of acceptance test-driven development is explained in Section 3.3.2.

Acceptance test-driven development creates reusable tests for regression testing. Specific tools
support creation and execution of such tests, often within the continuous integration process. These
tools can connect to data and service layers of the application, which allows tests to be executed at
the system or acceptance level. Acceptance test-driven development allows quick resolution of
defects and validation of feature behavior. It helps determine if the acceptance criteria are met for the
feature.

Behavior-Driven Development
Behavior-driven development [Chelimsky10] allows a developer to focus on testing the code based on
the expected behavior of the software. Because the tests are based on the exhibited behavior of the
software, the tests are generally easier for other team members and stakeholders to understand.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 29 of 43 31 May 2014

© International Software Testing Qualifications Board

Specific behavior-driven development frameworks can be used to define acceptance criteria based on
the given/when/then format:

Given some initial context,
When an event occurs,
Then ensure some outcomes.

From these requirements, the behavior-driven development framework generates code that can be
used by developers to create test cases. Behavior-driven development helps the developer
collaborate with other stakeholders, including testers, to define accurate unit tests focused on
business needs.

3.1.2 The Test Pyramid

A software system may be tested at different levels. Typical test levels are, from the base of the
pyramid to the top, unit, integration, system, and acceptance (see [ISTQB_FL_SYL], Section 2.2). The
test pyramid emphasizes having a large number of tests at the lower levels (bottom of the pyramid)
and, as development moves to the upper levels, the number of tests decreases (top of the pyramid).
Usually unit and integration level tests are automated and are created using API-based tools. At the
system and acceptance levels, the automated tests are created using GUI-based tools. The test
pyramid concept is based on the testing principle of early QA and testing (i.e., eliminating defects as
early as possible in the lifecycle).

3.1.3 Testing Quadrants, Test Levels, and Testing Types

Testing quadrants, defined by Brian Marick [Crispin08], align the test levels with the appropriate test
types in the Agile methodology. The testing quadrants model, and its variants, helps to ensure that all
important test types and test levels are included in the development lifecycle. This model also provides
a way to differentiate and describe the types of tests to all stakeholders, including developers, testers,
and business representatives.

In the testing quadrants, tests can be business (user) or technology (developer) facing. Some tests
support the work done by the Agile team and confirm software behavior. Other tests can verify the
product. Tests can be fully manual, fully automated, a combination of manual and automated, or
manual but supported by tools. The four quadrants are as follows:

 Quadrant Q1 is unit level, technology facing, and supports the developers. This quadrant
contains unit tests. These tests should be automated and included in the continuous
integration process.

 Quadrant Q2 is system level, business facing, and confirms product behavior. This quadrant
contains functional tests, examples, story tests, user experience prototypes, and simulations.
These tests check the acceptance criteria and can be manual or automated. They are often
created during the user story development and thus improve the quality of the stories. They
are useful when creating automated regression test suites.

 Quadrant Q3 is system or user acceptance level, business facing, and contains tests that
critique the product, using realistic scenarios and data. This quadrant contains exploratory
testing, scenarios, process flows, usability testing, user acceptance testing, alpha testing, and
beta testing. These tests are often manual and are user-oriented.

 Quadrant Q4 is system or operational acceptance level, technology facing, and contains tests
that critique the product. This quadrant contains performance, load, stress, and scalability
tests, security tests, maintainability, memory management, compatibility and interoperability,
data migration, infrastructure, and recovery testing. These tests are often automated.

During any given iteration, tests from any or all quadrants may be required. The testing quadrants
apply to dynamic testing rather than static testing.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 30 of 43 31 May 2014

© International Software Testing Qualifications Board

3.1.4 The Role of a Tester

Throughout this syllabus, general reference has been made to Agile methods and techniques, and the
role of a tester within various Agile lifecycles. This subsection looks specifically at the role of a tester in
a project following a Scrum lifecycle [Aalst13].

Teamwork
Teamwork is a fundamental principle in Agile development. Agile emphasizes the whole-team
approach consisting of developers, testers, and business representatives working together. The
following are organizational and behavioral best practices in Scrum teams:

 Cross-functional: Each team member brings a different set of skills to the team. The team
works together on test strategy, test planning, test specification, test execution, test
evaluation, and test results reporting.

 Self-organizing: The team may consist only of developers, but, as noted in Section 2.1.5,
ideally there would be one or more testers.

 Co-located: Testers sit together with the developers and the product owner.

 Collaborative: Testers collaborate with their team members, other teams, the stakeholders,
the product owner, and the Scrum Master.

 Empowered: Technical decisions regarding design and testing are made by the team as a
whole (developers, testers, and Scrum Master), in collaboration with the product owner and
other teams if needed.

 Committed: The tester is committed to question and evaluate the product’s behavior and
characteristics with respect to the expectations and needs of the customers and users.

 Transparent: Development and testing progress is visible on the Agile task board (see Section
2.2.1).

 Credible: The tester must ensure the credibility of the strategy for testing, its implementation,
and execution, otherwise the stakeholders will not trust the test results. This is often done by
providing information to the stakeholders about the testing process.

 Open to feedback: Feedback is an important aspect of being successful in any project,
especially in Agile projects. Retrospectives allow teams to learn from successes and from
failures.

 Resilient: Testing must be able to respond to change, like all other activities in Agile projects.

These best practices maximize the likelihood of successful testing in Scrum projects.

Sprint Zero
Sprint zero is the first iteration of the project where many preparation activities take place (see Section
1.2.5). The tester collaborates with the team on the following activities during this iteration:

 Identify the scope of the project (i.e., the product backlog)

 Create an initial system architecture and high-level prototypes

 Plan, acquire, and install needed tools (e.g., for test management, defect management, test
automation, and continuous integration)

 Create an initial test strategy for all test levels, addressing (among other topics) test scope,
technical risks, test types (see Section 3.1.3), and coverage goals

 Perform an initial quality risk analysis (see Section 3.2.1)

 Define test metrics to measure the test process, the progress of testing in the project, and
product quality

 Specify the definition of “done”

 Create the task board (see Section 2.2.1)

 Define when to continue or stop testing before delivering the system to the customer

Sprint zero sets the direction for what testing needs to achieve and how testing needs to achieve it
throughout the sprints.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 31 of 43 31 May 2014

© International Software Testing Qualifications Board

Integration
In Agile projects, the objective is to deliver customer value on a continuous basis (preferably in every
sprint). To enable this, the integration strategy should consider both design and testing. To enable a
continuous testing strategy for the delivered functionality and characteristics, it is important to identify
all dependencies between underlying functions and features.

Test Planning
Since testing is fully integrated into the Agile team, test planning should start during the release
planning session and be updated during each sprint. Test planning for the release and each sprint
should address the issues discussed in Section 1.2.5.

Sprint planning results in a set of tasks to put on the task board, where each task should have a length
of one or two days of work. In addition, any testing issues should be tracked to keep a steady flow of
testing.

Agile Testing Practices
Many practices may be useful for testers in a scrum team, some of which include:

 Pairing: Two team members (e.g., a tester and a developer, two testers, or a tester and a
product owner) sit together at one workstation to perform a testing or other sprint task.

 Incremental test design: Test cases and charters are gradually built from user stories and
other test bases, starting with simple tests and moving toward more complex ones.

 Ming mapping: Mind mapping is a useful tool when testing [Crispin08]. For example, testers
can use mind mapping to identify which test sessions to perform, to show test strategies, and
to describe test data.

These practices are in addition to other practices discussed in this syllabus and in Chapter 4 of the
Foundation Level syllabus [ISTQB_FL_SYL].

3.2 Assessing Quality Risks and Estimating Test Effort

A typical objective of testing in all projects, Agile or traditional, is to reduce the risk of product quality
problems to an acceptable level prior to release. Testers in Agile projects can use the same types of
techniques used in traditional projects to identify quality risks (or product risks), assess the associated
level of risk, estimate the effort required to reduce those risks sufficiently, and then mitigate those risks
through test design, implementation, and execution. However, given the short iterations and rate of
change in Agile projects, some adaptations of those techniques are required.

3.2.1 Assessing Quality Risks in Agile Projects

One of the many challenges in testing is the proper selection, allocation, and prioritization of test
conditions. This includes determining the appropriate amount of effort to allocate in order to cover
each condition with tests, and sequencing the resulting tests in a way that optimizes the effectiveness
and efficiency of the testing work to be done. Risk identification, analysis, and risk mitigation strategies
can be used by the testers in Agile teams to help determine an acceptable number of test cases to
execute, although many interacting constraints and variables may require compromises.

Risk is the possibility of a negative or undesirable outcome or event. The level of risk is found by
assessing the likelihood of occurrence of the risk and the impact of the risk. When the primary effect of
the potential problem is on product quality, potential problems are referred to as quality risks or
product risks. When the primary effect of the potential problem is on project success, potential
problems are referred to as project risks or planning risks [Black07] [vanVeenendaal12].

In Agile projects, quality risk analysis takes place at two places.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 32 of 43 31 May 2014

© International Software Testing Qualifications Board

 Release planning: business representatives who know the features in the release provide a
high-level overview of the risks, and the whole team, including the tester(s), may assist in the
risk identification and assessment.

 Iteration planning: the whole team identifies and assesses the quality risks.

Examples of quality risks for a system include:

 Incorrect calculations in reports (a functional risk related to accuracy)

 Slow response to user input (a non-functional risk related to efficiency and response time)

 Difficulty in understanding screens and fields (a non-functional risk related to usability and
understandability)

As mentioned earlier, an iteration starts with iteration planning, which culminates in estimated tasks on
a task board. These tasks can be prioritized in part based on the level of quality risk associated with
them. Tasks associated with higher risks should start earlier and involve more testing effort. Tasks
associated with lower risks should start later and involve less testing effort.

An example of how the quality risk analysis process in an Agile project may be carried out during
iteration planning is outlined in the following steps:

1. Gather the Agile team members together, including the tester(s)
2. List all the backlog items for the current iteration (e.g., on a task board)
3. Identify the quality risks associated with each item, considering all relevant quality

characteristics
4. Assess each identified risk, which includes two activities: categorizing the risk and determining

its level of risk based on the impact and the likelihood of defects
5. Determine the extent of testing proportional to the level of risk.
6. Select the appropriate test technique(s) to mitigate each risk, based on the risk, the level of

risk, and the relevant quality characteristic.

The tester then designs, implements, and executes tests to mitigate the risks. This includes the totality
of features, behaviors, quality characteristics, and attributes that affect customer, user, and
stakeholder satisfaction.

Throughout the project, the team should remain aware of additional information that may change the
set of risks and/or the level of risk associated with known quality risks. Periodic adjustment of the
quality risk analysis, which results in adjustments to the tests, should occur. Adjustments include
identifying new risks, re-assessing the level of existing risks, and evaluating the effectiveness of risk
mitigation activities.

Quality risks can also be mitigated before test execution starts. For example, if problems with the user
stories are found during risk identification, the project team can thoroughly review user stories as a
mitigating strategy.

3.2.2 Estimating Testing Effort Based on Content and Risk

During release planning, the Agile team estimates the effort required to complete the release. The
estimate addresses the testing effort as well. A common estimation technique used in Agile projects is
planning poker, a consensus-based technique. The product owner or customer reads a user story to
the estimators. Each estimator has a deck of cards with values similar to the Fibonacci sequence (i.e.,
0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …) or any other progression of choice (e.g., shirt sizes ranging from
extra-small to extra-extra-large). The values represent the number of story points, effort days, or other
units in which the team estimates. The Fibonacci sequence is recommended because the numbers in
the sequence reflect that uncertainty grows proportionally with the size of the story. A high estimate
usually means that the story is not well understood or should be broken down into multiple smaller
stories.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 33 of 43 31 May 2014

© International Software Testing Qualifications Board

The estimators discuss the feature, and ask questions of the product owner as needed. Aspects such
as development and testing effort, complexity of the story, and scope of testing play a role in the
estimation. Therefore, it is advisable to include the risk level of a backlog item, in addition to the
priority specified by the product owner, before the planning poker session is initiated. When the
feature has been fully discussed, each estimator privately selects one card to represent his or her
estimate. All cards are then revealed at the same time. If all estimators selected the same value, that
becomes the estimate. If not, the estimators discuss the differences in estimates after which the poker
round is repeated until agreement is reached, either by consensus or by applying rules (e.g., use the
median, use the highest score) to limit the number of poker rounds. These discussions ensure a
reliable estimate of the effort needed to complete product backlog items requested by the product
owner and help improve collective knowledge of what has to be done [Cohn04].

3.3 Techniques in Agile Projects

Many of the test techniques and testing levels that apply to traditional projects can also be applied to
Agile projects. However, for Agile projects, there are some specific considerations and variances in
test techniques, terminologies, and documentation that should be considered.

3.3.1 Acceptance Criteria, Adequate Coverage, and Other Information for Testing

Agile projects outline initial requirements as user stories in a prioritized backlog at the start of the
project. Initial requirements are short and usually follow a predefined format (see Section 1.2.2). Non-
functional requirements, such as usability and performance, are also important and can be specified
as unique user stories or connected to other functional user stories. Non-functional requirements may
follow a predefined format or standard, such as [ISO25000], or an industry specific standard.

The user stories serve as an important test basis. Other possible test bases include:

 Experience from previous projects

 Existing functions, features, and quality characteristics of the system

 Code, architecture, and design

 User profiles (context, system configurations, and user behavior)

 Information on defects from existing and previous projects

 A categorization of defects in a defect taxonomy

 Applicable standards (e.g., [DO-178B] for avionics software)

 Quality risks (see Section 3.2.1)

During each iteration, developers create code which implements the functions and features described
in the user stories, with the relevant quality characteristics, and this code is verified and validated via
acceptance testing. To be testable, acceptance criteria should address the following topics where
relevant [Wiegers13]:

 Functional behavior: The externally observable behavior with user actions as input operating
under certain configurations.

 Quality characteristics: How the system performs the specified behavior. The characteristics
may also be referred to as quality attributes or non-functional requirements. Common quality
characteristics are performance, reliability, usability, etc.

 Scenarios (use cases): A sequence of actions between an external actor (often a user) and
the system, in order to accomplish a specific goal or business task.

 Business rules: Activities that can only be performed in the system under certain conditions
defined by outside procedures and constraints (e.g., the procedures used by an insurance
company to handle insurance claims).

 External interfaces: Descriptions of the connections between the system to be developed and
the outside world. External interfaces can be divided into different types (user interface,
interface to other systems, etc.).

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 34 of 43 31 May 2014

© International Software Testing Qualifications Board

 Constraints: Any design and implementation constraint that will restrict the options for the
developer. Devices with embedded software must often respect physical constraints such as
size, weight, and interface connections.

 Data definitions: The customer may describe the format, data type, allowed values, and
default values for a data item in the composition of a complex business data structure (e.g.,
the ZIP code in a U.S. mail address).

In addition to the user stories and their associated acceptance criteria, other information is relevant for
the tester, including:

 How the system is supposed to work and be used

 The system interfaces that can be used/accessed to test the system

 Whether current tool support is sufficient

 Whether the tester has enough knowledge and skill to perform the necessary tests
Testers will often discover the need for additional information (e.g., code coverage) throughout the
iterations and should work collaboratively with the rest of the Agile team members to obtain that
information. Relevant information plays a part in determining whether a particular activity can be
considered done. This concept of the definition of done is critical in Agile projects and applies in a
number of different ways as discussed in the following sub-subsections.

Test Levels
Each test level has its own definition of done. The following list gives examples that may be relevant
for the different test levels.

 Unit testing

 100% decision coverage where possible, with careful reviews of any infeasible paths

 Static analysis performed on all code

 No unresolved major defects (ranked based on priority and severity)

 No known unacceptable technical debt remaining in the design and the code [Jones11]

 All code, unit tests, and unit test results reviewed

 All unit tests automated

 Important characteristics are within agreed limits (e.g., performance)

 Integration testing

 All functional requirements tested, including both positive and negative tests, with the
number of tests based on size, complexity, and risks

 All interfaces between units tested

 All quality risks covered according to the agreed extent of testing

 No unresolved major defects (prioritized according to risk and importance)

 All defects found are reported

 All regression tests automated, where possible, with all automated tests stored in a
common repository

 System testing

 End-to-end tests of user stories, features, and functions

 All user personas covered

 The most important quality characteristics of the system covered (e.g., performance,
robustness, reliability)

 Testing done in a production-like environment(s), including all hardware and software for
all supported configurations, to the extent possible

 All quality risks covered according to the agreed extent of testing

 All regression tests automated, where possible, with all automated tests stored in a
common repository

 All defects found are reported and possibly fixed

 No unresolved major defects (prioritized according to risk and importance)

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 35 of 43 31 May 2014

© International Software Testing Qualifications Board

User Story
The definition of done for user stories may be determined by the following criteria:

 The user stories selected for the iteration are complete, understood by the team, and have
detailed, testable acceptance criteria

 All the elements of the user story are specified and reviewed, including the user story
acceptance tests, have been completed

 Tasks necessary to implement and test the selected user stories have been identified and
estimated by the team

Feature
The definition of done for features, which may span multiple user stories or epics, may include:

 All constituent user stories, with acceptance criteria, are defined and approved by the
customer

 The design is complete, with no known technical debt

 The code is complete, with no known technical debt or unfinished refactoring

 Unit tests have been performed and have achieved the defined level of coverage

 Integration tests and system tests for the feature have been performed according to the
defined coverage criteria

 No major defects remain to be corrected

 Feature documentation is complete, which may include release notes, user manuals, and on-
line help functions

Iteration
The definition of done for the iteration may include the following:

 All features for the iteration are ready and individually tested according to the feature level
criteria

 Any non-critical defects that cannot be fixed within the constraints of the iteration added to the
product backlog and prioritized

 Integration of all features for the iteration completed and tested

 Documentation written, reviewed, and approved

At this point, the software is potentially releasable because the iteration has been successfully
completed, but not all iterations result in a release.

Release
The definition of done for a release, which may span multiple iterations, may include the following
areas:

 Coverage: All relevant test basis elements for all contents of the release have been covered
by testing. The adequacy of the coverage is determined by what is new or changed, its
complexity and size, and the associated risks of failure.

 Quality: The defect intensity (e.g., how many defects are found per day or per transaction),
the defect density (e.g., the number of defects found compared to the number of user stories,
effort, and/or quality attributes), estimated number of remaining defects are within acceptable
limits, the consequences of unresolved and remaining defects (e.g., the severity and priority)
are understood and acceptable, the residual level of risk associated with each identified
quality risk is understood and acceptable.

 Time: If the pre-determined delivery date has been reached, the business considerations
associated with releasing and not releasing need to be considered.

 Cost: The estimated lifecycle cost should be used to calculate the return on investment for the
delivered system (i.e., the calculated development and maintenance cost should be
considerably lower than the expected total sales of the product). The main part of the lifecycle

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 36 of 43 31 May 2014

© International Software Testing Qualifications Board

cost often comes from maintenance after the product has been released, due to the number of
defects escaping to production.

3.3.2 Applying Acceptance Test-Driven Development

Acceptance test-driven development is a test-first approach. Test cases are created prior to
implementing the user story. The test cases are created by the Agile team, including the developer,
the tester, and the business representatives [Adzic09] and may be manual or automated. The first
step is a specification workshop where the user story is analyzed, discussed, and written by
developers, testers, and business representatives. Any incompleteness, ambiguities, or errors in the
user story are fixed during this process.

The next step is to create the tests. This can be done by the team together or by the tester
individually. In any case, an independent person such as a business representative validates the tests.
The tests are examples that describe the specific characteristics of the user story. These examples
will help the team implement the user story correctly. Since examples and tests are the same, these
terms are often used interchangeably. The work starts with basic examples and open questions.

Typically, the first tests are the positive tests, confirming the correct behavior without exception or
error conditions, comprising the sequence of activities executed if everything goes as expected. After
the positive path tests are done, the team should write negative path tests and cover non-functional
attributes as well (e.g., performance, usability). Tests are expressed in a way that every stakeholder is
able to understand, containing sentences in natural language involving the necessary preconditions, if
any, the inputs, and the related outputs.

The examples must cover all the characteristics of the user story and should not add to the story. This
means that an example should not exist which describes an aspect of the user story not documented
in the story itself. In addition, no two examples should describe the same characteristics of the user
story.

3.3.3 Functional and Non-Functional Black Box Test Design

In Agile testing, many tests are created by testers concurrently with the developers’ programming
activities. Just as the developers are programming based on the user stories and acceptance criteria,
so are the testers creating tests based on user stories and their acceptance criteria. (Some tests,
such as exploratory tests and some other experience-based tests, are created later, during test
execution, as explained in Section 3.3.4.) Testers can apply traditional black box test design
techniques such as equivalence partitioning, boundary value analysis, decision tables, and state
transition testing to create these tests. For example, boundary value analysis could be used to select
test values when a customer is limited in the number of items they may select for purchase.

In many situations, non-functional requirements can be documented as user stories. Black box test
design techniques (such as boundary value analysis) can also be used to create tests for non-
functional quality characteristics. The user story might contain performance or reliability requirements.
For example, a given execution cannot exceed a time limit or a number of operations may fail less
than a certain number of times.

For more information about the use of black box test design techniques, see the Foundation Level
syllabus [ISTQB_FL_SYL] and the Advanced Level Test Analyst syllabus [ISTQB_ALTA_SYL].

3.3.4 Exploratory Testing and Agile Testing

Exploratory testing is important in Agile projects due to the limited time available for test analysis and
the limited details of the user stories. In order to achieve the best results, exploratory testing should be
combined with other experience-based techniques as part of a reactive testing strategy, blended with

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 37 of 43 31 May 2014

© International Software Testing Qualifications Board

other testing strategies such as analytical risk-based testing, analytical requirements-based testing,
model-based testing, and regression-averse testing. Test strategies and test strategy blending is
discussed in the Foundation Level syllabus [ISTQB_FL_SYL].

In exploratory testing, test design and test execution occur at the same time, guided by a prepared
test charter. A test charter provides the test conditions to cover during a time-boxed testing session.
During exploratory testing, the results of the most recent tests guide the next test. The same white box
and black box techniques can be used to design the tests as when performing pre-designed testing.

A test charter may include the following information:

 Actor: intended user of the system

 Purpose: the theme of the charter including what particular objective the actor wants to
achieve, i.e., the test conditions

 Setup: what needs to be in place in order to start the test execution

 Priority: relative importance of this charter, based on the priority of the associated user story or
the risk level

 Reference: specifications (e.g., user story), risks, or other information sources

 Data: whatever data is needed to carry out the charter

 Activities: a list of ideas of what the actor may want to do with the system (e.g., “Log on to the
system as a super user”) and what would be interesting to test (both positive and negative
tests)

 Oracle notes: how to evaluate the product to determine correct results (e.g., to capture what
happens on the screen and compare to what is written in the user’s manual)

 Variations: alternative actions and evaluations to complement the ideas described under
activities

To manage exploratory testing, a method called session-based test management can be used. A
session is defined as an uninterrupted period of testing which could last from 60 to 120 minutes. Test
sessions include the following:

 Survey session (to learn how it works)

 Analysis session (evaluation of the functionality or characteristics)
Deep coverage (corner cases, scenarios, interactions)The quality of the tests depends on the testers
ability to ask relevant questions about what to test. Examples include the following:

 What is most important to find out about the system?

 In what way may the system fail?

 What happens if.....?

 What should happen when.....?

 Are customer needs, requirements, and expectations fulfilled?

 Is the system possible to install (and remove if necessary) in all supported upgrade paths?

During test execution, the tester uses creativity, intuition, cognition, and skill to find possible problems
with the product. The tester also needs to have good knowledge and understanding of the software
under test, the business domain, how the software is used, and how to determine when the system
fails.

A set of heuristics can be applied when testing. A heuristic can guide the tester in how to perform the
testing and to evaluate the results [Hendrickson]. Examples include:

 Boundaries

 CRUD (Create, Read, Update, Delete)

 Configuration variations

 Interruptions (e.g., log off, shut down, or reboot)

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 38 of 43 31 May 2014

© International Software Testing Qualifications Board

It is important for the tester to document the process as much as possible. Otherwise, it would be
difficult to go back and see how a problem in the system was discovered. The following list provides
examples of information that may be useful to document:

 Test coverage: what input data have been used, how much has been covered, and how much
remains to be tested

 Evaluation notes: observations during testing, do the system and feature under test seem to
be stable, were any defects found, what is planned as the next step according to the current
observations, and any other list of ideas

 Risk/strategy list: which risks have been covered and which ones remain among the most
important ones, will the initial strategy be followed, does it need any changes

 Issues, questions, and anomalies: any unexpected behavior, any questions regarding the
efficiency of the approach, any concerns about the ideas/test attempts, test environment, test
data, misunderstanding of the function, test script or the system under test

 Actual behavior: recording of actual behavior of the system that needs to be saved (e.g.,
video, screen captures, output data files)

The information logged should be captured and/or summarized into some form of status management
tools (e.g., test management tools, task management tools, the task board), in a way that makes it
easy for stakeholders to understand the current status for all testing that was performed.

3.4 Tools in Agile Projects

Tools described in the Foundation Level syllabus [ISTQB_FL_SYL] are relevant and used by testers
on Agile teams. Not all tools are used the same way and some tools have more relevance for Agile
projects than they have in traditional projects. For example, although the test management tools,
requirements management tools, and incident management tools (defect tracking tools) can be used
by Agile teams, some Agile teams opt for an all-inclusive tool (e.g., application lifecycle management
or task management) that provides features relevant to Agile development, such as task boards,
burndown charts, and user stories. Configuration management tools are important to testers in Agile
teams due to the high number of automated tests at all levels and the need to store and manage the
associated automated test artifacts.

In addition to the tools described in the Foundation Level syllabus [ISTQB_FL_SYL], testers on Agile
projects may also utilize the tools described in the following subsections. These tools are used by the
whole team to ensure team collaboration and information sharing, which are key to Agile practices.

3.4.1 Task Management and Tracking Tools

In some cases, Agile teams use physical story/task boards (e.g., whiteboard, corkboard) to manage
and track user stories, tests, and other tasks throughout each sprint. Other teams will use application
lifecycle management and task management software, including electronic task boards. These tools
serve the following purposes:

 Record stories and their relevant development and test tasks, to ensure that nothing gets lost
during a sprint

 Capture team members’ estimates on their tasks and automatically calculate the effort
required to implement a story, to support efficient iteration planning sessions

 Associate development tasks and test tasks with the same story, to provide a complete picture
of the team’s effort required to implement the story

 Aggregate developer and tester updates to the task status as they complete their work,
automatically providing a current calculated snapshot of the status of each story, the iteration,
and the overall release

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 39 of 43 31 May 2014

© International Software Testing Qualifications Board

 Provide a visual representation (via metrics, charts, and dashboards) of the current state of
each user story, the iteration, and the release, allowing all stakeholders, including people on
geographically distributed teams, to quickly check status

 Integrate with configuration management tools, which can allow automated recording of code
check-ins and builds against tasks, and, in some cases, automated status updates for tasks

3.4.2 Communication and Information Sharing Tools

In addition to e-mail, documents, and verbal communication, Agile teams often use three additional
types of tools to support communication and information sharing: wikis, instant messaging, and
desktop sharing.

Wikis allow teams to build and share an online knowledge base on various aspects of the project,
including the following:

 Product feature diagrams, feature discussions, prototype diagrams, photos of whiteboard
discussions, and other information

 Tools and/or techniques for developing and testing found to be useful by other members of the
team

 Metrics, charts, and dashboards on product status, which is especially useful when the wiki is
integrated with other tools such as the build server and task management system, since the
tool can update product status automatically

 Conversations between team members, similar to instant messaging and email, but in a way
that is shared with everyone else on the team

Instant messaging, audio teleconferencing, and video chat tools provide the following benefits:

 Allow real time direct communication between team members, especially distributed teams

 Involve distributed teams in standup meetings

 Reduce telephone bills by use of voice-over-IP technology, removing cost constraints that
could reduce team member communication in distributed settings

Desktop sharing and capturing tools provide the following benefits:

 In distributed teams, product demonstrations, code reviews, and even pairing can occur

 Capturing product demonstrations at the end of each iteration, which can be posted to the
team’s wiki

These tools should be used to complement and extend, not replace, face-to-face communication in
Agile teams.

3.4.3 Software Build and Distribution Tools

As discussed earlier in this syllabus, daily build and deployment of software is a key practice in Agile
teams. This requires the use of continuous integration tools and build distribution tools. The uses,
benefits, and risks of these tools was described earlier in Section 1.2.4.

3.4.4 Configuration Management Tools

On Agile teams, configuration management tools may be used not only to store source code and
automated tests, but manual tests and other test work products are often stored in the same repository
as the product source code. This provides traceability between which versions of the software were
tested with which particular versions of the tests, and allows for rapid change without losing historical
information. The main types of version control systems include centralized source control systems
and distributed version control systems. The team size, structure, location, and requirements to
integrate with other tools will determine which version control system is right for a particular Agile
project.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 40 of 43 31 May 2014

© International Software Testing Qualifications Board

3.4.5 Test Design, Implementation, and Execution Tools

Some tools are useful to Agile testers at specific points in the software testing process. While most of
these tools are not new or specific to Agile, they provide important capabilities given the rapid change
of Agile projects.

 Test design tools: Use of tools such as mind maps have become more popular to quickly
design and define tests for a new feature.

 Test case management tools: The type of test case management tools used in Agile may be
part of the whole team’s application lifecycle management or task management tool.

 Test data preparation and generation tools: Tools that generate data to populate an
application’s database are very beneficial when a lot of data and combinations of data are
necessary to test the application. These tools can also help re-define the database structure
as the product undergoes changes during an Agile project and refactor the scripts to generate
the data. This allows quick updating of test data as changes occur. Some test data
preparation tools use production data sources as a raw material and use scripts to remove or
anonymize sensitive data. Other test data preparation tools can help with validating large data
inputs or outputs.

 Test data load tools: After data has been generated for testing, it needs to be loaded into the
application. Manual data entry is often time consuming and error prone, but data load tools
are available to make the process reliable and efficient. In fact, many of the data generator
tools include an integrated data load component. In other cases, bulk-loading using the
database management systems is also possible.

 Automated test execution tools: There are test execution tools which are more aligned to Agile
testing. Specific tools are available via both commercial and open source avenues to support
test first approaches, such as behavior-driven development, test-driven development, and
acceptance test-driven development. These tools allow testers and business staff to express
the expected system behavior in tables or natural language using keywords.

 Exploratory test tools: Tools that capture and log activities performed on an application during
an exploratory test session are beneficial to the tester and developer, as they record the
actions taken. This is useful when a defect is found, as the actions taken before the failure
occurred have been captured and can be used to report the defect to the developers. Logging
steps performed in an exploratory test session may prove to be beneficial if the test is
ultimately included in the automated regression test suite.

3.4.6 Cloud Computing and Virtualization Tools

Virtualization allows a single physical resource (server) to operate as many separate, smaller
resources. When virtual machines or cloud instances are used, teams have a greater number of
servers available to them for development and testing. This can help to avoid delays associated with
waiting for physical servers. Provisioning a new server or restoring a server is more efficient with
snapshot capabilities built into most virtualization tools. Some test management tools now utilize
virtualization technologies to snapshot servers at the point when a fault is detected, allowing testers to
share the snapshot with the developers investigating the fault.

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 41 of 43 31 May 2014

© International Software Testing Qualifications Board

4. References

4.1 Standards

 [DO-178B] RTCA/FAA DO-178B, Software Considerations in Airborne Systems and
Equipment Certification, 1992.

 [ISO25000] ISO/IEC 25000:2005, Software Engineering - Software Product Quality
Requirements and Evaluation (SQuaRE), 2005.

4.2 ISTQB Documents

 [ISTQB_ALTA_SYL] ISTQB Advanced Level Test Analyst Syllabus, Version 2012

 [ISTQB_ALTM_SYL] ISTQB Advanced Level Test Manager Syllabus, Version 2012

 [ISTQB_FA_OVIEW] ISTQB Foundation Level Agile Tester Overview, Version 1.0

 [ISTQB_FL_SYL] ISTQB Foundation Level Syllabus, Version 2011

4.3 Books

[Aalst13] Leo van der Aalst and Cecile Davis, “TMap NEXT
®
 in Scrum,” ICT-Books.com, 2013.

[Adzic09] Gojko Adzic, “Bridging the Communication Gap: Specification by Example and Agile
Acceptance Testing,” Neuri Limited, 2009.

[Anderson13] David Anderson, “Kanban: Successful Evolutionary Change for Your Technology
Business,” Blue Hole Press, 2010.

[Beck02] Kent Beck, “Test-driven Development: By Example,” Addison-Wesley Professional, 2002.
[Beck04] Kent Beck and Cynthia Andres, “Extreme Programming Explained: Embrace Change, 2e”

Addison-Wesley Professional, 2004.
[Black07] Rex Black, “Pragmatic Software Testing,” John Wiley and Sons, 2007.
[Black09] Rex Black, “Managing the Testing Process: Practical Tools and Techniques for Managing

Hardware and Software Testing, 3e,” Wiley, 2009.
[Chelimsky10] David Chelimsky et al, “The RSpec Book: Behavior Driven Development with Rspec,

Cucumber, and Friends,” Pragmatic Bookshelf, 2010.
[Cohn04] Mike Cohn, “User Stories Applied: For Agile Software Development,” Addison-Wesley

Professional, 2004.
[Crispin08] Lisa Crispin and Janet Gregory, “Agile Testing: A Practical Guide for Testers and Agile

Teams,” Addison-Wesley Professional, 2008.
[Goucher09] Adam Goucher and Tim Reilly, editors, “Beautiful Testing: Leading Professionals Reveal

How They Improve Software,” O'Reilly Media, 2009.
[Jeffries00] Ron Jeffries, Ann Anderson, and Chet Hendrickson, “Extreme Programming Installed,”

Addison-Wesley Professional, 2000.
[Jones11] Capers Jones and Olivier Bonsignour, “The Economics of Software Quality,” Addison-

Wesley Professional, 2011.
[Linz14] Tilo Linz, “Testing in Scrum: A Guide for Software Quality Assurance in the Agile World,”

Rocky Nook, 2014.
[Schwaber01] Ken Schwaber and Mike Beedle, “Agile Software Development with Scrum,” Prentice

Hall, 2001.
[vanVeenendaal12] Erik van Veenendaal, “The PRISMA approach”, Uitgeverij Tutein Nolthenius,

2012.
[Wiegers13] Karl Wiegers and Joy Beatty, “Software Requirements, 3e,” Microsoft Press, 2013.

http://www.iso.org/iso/rss.xml?csnumber=35683&rss=detail

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 42 of 43 31 May 2014

© International Software Testing Qualifications Board

4.4 Agile Terminology

Keywords which are found in the ISTQB Glossary are identified at the beginning of each chapter. For
common Agile terms, we have relied on the following well-accepted Internet resources which provide
definitions.

http://guide.Agilealliance.org/
http://whatis.techtargetcom/glossary
http://www.scrumalliance.org/

We encourage readers to check these sites if they find unfamiliar Agile-related terms in this document.
These links were active at the time of release of this document.

4.5 Other References

The following references point to information available on the Internet and elsewhere. Even though
these references were checked at the time of publication of this syllabus, the ISTQB cannot be held
responsible if the references are not available anymore.

 [Agile Alliance Guide] Various contributors, http://guide.Agilealliance.org/.

 [Agilemanifesto] Various contributors, www.agilemanifesto.org.

 [Hendrickson]: Elisabeth Hendrickson, “Acceptance Test-driven Development,”
testobsessed.com/2008/12/acceptance-test-driven-development-atdd-an-overview.

 [INVEST] Bill Wake, “INVEST in Good Stories, and SMART Tasks,” xp123.com/articles/invest-
in-good-stories-and-smart-tasks.

 [Kubaczkowski] Greg Kubaczkowski and Rex Black, “Mission Made Possible,” www.rbcs-
us.com/images/documents/Mission-Made-Possible.pdf.

http://guide.agilealliance.org/
http://whatis.techtargetcom/glossary

Certified Tester
Foundation Level Syllabus – Agile Tester

International
Software Testing

Qualifications Board

Version 2014 Page 43 of 43 31 May 2014

© International Software Testing Qualifications Board

5. Index

3C concept, 13
acceptance criteria, 13, 14, 16, 20, 21, 23,

25, 27, 28, 29, 33, 34, 35, 36
acceptance test-driven development, 28, 36
acceptance tests, 10, 15, 16, 21, 24, 35
Agile Manifesto, 8, 9, 10, 11
Agile software development, 8, 12
Agile task board, 23
Agile task boards, 23
backlog refinement, 12
behavior-driven development, 28, 29
build verification test, 18
build verification tests, 25
burndown charts, 23, 38
business stakeholders, 10
collocation

co-location, 10
configuration item, 18
configuration management, 18, 24, 39
continuous feedback, 11
continuous integration, 8, 11, 12, 14, 15, 16,

21, 22, 24, 25, 28, 29, 30, 39
customer collaboration, 9
daily stand-up meeting, 23
data generator tools, 40
defect taxonomy, 33
epics, 20
exploratory testing, 20, 27, 29, 37
given/when/then, 29
increment, 12
incremental development model, 8
INVEST, 13
iteration planning, 16, 19, 21, 23, 26, 32, 38
iterative development model, 8
Kanban, 11, 12, 13
Kanban board, 13
pair testing, 31
performance testing, 27
planning poker, 33
power of three, 11
process improvement, 8, 23
product backlog, 12, 13, 16, 30, 33, 35
Product Owner, 12
product risk, 27, 32
project work products, 20
quality risk, 16, 21, 27, 32

quality risk analysis, 30, 31
regression testing, 15, 20, 21, 24, 27, 28
release planning, 8, 14, 16, 19, 24, 31, 32
retrospective, 14, 30
root cause analysis, 14
Scrum, 11, 12, 13, 21, 30, 41
Scrum Master, 12
security testing, 29
self-organizing teams, 10
software lifecycle, 8
sprint, 12
sprint backlog, 12, 16
stand-up meetings, 10, 23
story card, 13
story points, 32
sustainable development, 10
technical debt, 19, 24
test approach, 16, 27
test automation, 8, 10, 20, 23, 24, 25, 30
test basis, 8, 17, 33
test charter, 27, 37
test data preparation tools, 40
test estimation, 27
test execution automation, 27
test first programming, 12
test oracle, 8, 17
test pyramid, 27, 29
test strategy, 26, 27, 30
test-driven development, 8, 21, 27
testing quadrant model, 29
testing quadrants, 29
timeboxing, 12, 13
transparency, 12
twelve principles, 10
unit test framework, 27
usability testing, 29
user stories, 8, 13, 14, 15, 16, 19, 20, 21,

23, 25, 32, 33, 34, 35, 36, 38
user story, 8, 11, 13, 16, 17, 20, 21, 25, 28,

29, 32, 35, 36, 37, 39
velocity, 16, 24
version control, 39
whole-team approach, 8, 9, 10
working software, 9
XP. See Extreme Programming

